目录
文章侧重点
现有的RGB-T多模态的融合模型通常是设计一个大而复杂的融合模型,或是生成模态相关的置信分数来自适应性地融合RGB模态和TIR模态特征,或是充分考虑模态共享特征-模态独有特征-模态生成响应图这三个方面设计融合模型。这样复杂模型所带来的问题就是需要大量的训练数据,且尽可能包括各种有挑战属性的场景。
本篇文章作者之一的李成龙大佬实验室曾在2020年发表文章Challenge-Aware RGBT Tracking中提出一个RGB-T追踪的新思路:针对五个典型的挑战(如光照变化(IV)、快速运动(FM)、尺度变化(SV)、遮挡(OCC)和热交叉(TC))设计不同的分支提取相应特征,再融合起来。这样的设计好处在于减少了模型对训练数据的依赖,因为可以将训练数据按照属性分类对应这些分支进行单独训练,只有在训练融合模型的时候再合起来。这时候这个融合模型的参数会比上面所说的模型参数少很多。
这篇文章与以往文章的不同之处在于,重新设计了不同分支的融合模块,提出了基于属性的逐步融合网络【Attribute-Based Progressive Fusion Network,APFNet】