FaceNet中classifier.py文件代码解析

本文详细解读FaceNet中的classifier.py文件,深入理解其在人脸识别中的作用,包括特征提取、模型训练和分类过程。
摘要由CSDN通过智能技术生成

FaceNet中classifier.py文件代码解析

"""An example of how to use your own dataset to train a classifier that recognizes people.
一个如何使用您自己的数据集来训练识别人的分类器的例子。
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import numpy as np
import argparse
import facenet
import os
import sys
import math
import pickle
from sklearn.svm import SVC

def main(args):
  
    with tf.Graph().as_default():
      
        with tf.Session() as sess:
            ############获取数据集#####################################################
            np.random.seed(seed=args.seed)
            
            if args.use_split_dataset:
                #是否要将数据集进行划分。
                dataset_tmp = facenet.get_dataset(args.data_dir)
                #获取人脸图片
                train_set, test_set = split_dataset(dataset_tmp, args.min_nrof_images_per_class, args.nrof_train_images_per_class)
                #获取测试集和训练集
                if (args.mode=='TRAIN'):
                    dataset = train_set
                elif (args.mode=='CLASSIFY'):
                    dataset = test_set
                #如果本次操作要进行训练,那么数据选取训练集,也就是默认是选取10张图片,
                #如果是要进行分类,那么默认选取后第10张以后的所有图片
            else:
                #如果要是不进行划分,那么直接将数据集进行赋值,所有的图片都进行训练,或者进行测试
                dataset = facenet.get_dataset(args.data_dir)

            # Check that there are at least one training image per class
            #检查每个人物类至少有一个训练图像
            for cls in dataset:
                assert(len(cls.image_paths)>0, 'There must be at least one image for each class in the dataset')   
                #数据集中每个类必须至少有一个图像  
                #如果图像是个数是0,那么程序就停止运行       



                 
            paths, labels = facenet.get_image_paths_and_labels(dataset)
            #返回每张图片的路劲,返回每张图片对应的人名的索引
            
            print('Number of classes: %d' % len(dataset))
            #也就是输出有几个人
            print('Number of images: %d' % 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿虎呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值