这里以三国演义为例
三国演义.txt
alice_mask.png
效果展示
介绍
Python读取小说文本,绘制词云图,主要人物出场次序,社交网络关系图,章回字数
软件架构
环境准备:Python3
主要模块:networkx wordcloud matplotlib pyecharts imageio jieba
使用说明
导入需要的库
先进行 pip install
#导入networkx,matplotlib包
import networkx as nx
import matplotlib.pyplot as plt
import jieba.posseg as pseg #引入词性标注接口
#导入random包
import random
import codecs
# 导入pyecharts
from pyecharts import options as opts
# pyecharts 柱状图
from pyecharts.charts import Bar
# pyecharts 词云图
from pyecharts.charts import WordCloud
# pyecharts 折线/面积图
from pyecharts.charts import Line
# 词云
import wordcloud
import imageio
执行main.py
有详细注释
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 23 11:41:01 2021
@author: 陈建兵
"""
#导入networkx,matplotlib包
import networkx as nx
import matplotlib.pyplot as plt
import jieba.posseg as pseg #引入词性标注接口
#导入random包
import random
import codecs
# 导入pyecharts
from pyecharts import options as opts
# pyecharts 柱状图
from pyecharts.charts import Bar
# pyecharts 词云图
from pyecharts.charts import WordCloud
# pyecharts 折线/面积图
from pyecharts.charts import Line
# 词云
import wordcloud
import imageio
# 定义主要人物的个数(用于人物关系图,人物出场次数可视化图)
mainTop = 15
#读取文本
def read_txt(filepath):
file=open(filepath,'r+',encoding='utf-8')
txt=file.read()
file.close()
return txt
#获取小说文本
txt = read_txt('三国演义.txt')
#停词文档
def stopwordslist(filepath):
stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
return stopwords
#stopwords = stopwordslist('中文停用词库.txt')
excludes = {'将军', '却说', '令人', '赶来', '徐州', '不见', '下马', '喊声', '因此', '未知', '大败', '百姓', '大事', '一军', '之后', '接应', '起兵',
'成都', '原来', '江东', '正是', '忽然', '原来', '大叫', '上马', '天子', '一面', '太守', '不如', '忽报', '后人', '背后', '先主', '此人',
'城中', '然后', '大军', '何不', '先生', '何故', '夫人', '不如', '先锋', '二人', '不可', '如何', '荆州', '不能', '如此', '主公', '军士',
'商议', '引兵', '次日', '大喜', '魏兵', '军马', '于是', '东吴', '今日', '左右', '天下', '不敢', '陛下', '人马', '不知', '都督', '汉中',
'一人', '众将', '后主', '只见', '蜀兵','马军','黄巾','立功','白发','大吉','红旗','士卒','钱粮','于汉','郎舅', '龙凤', '古之', '白虎',
'古人云', '尔乃', '马飞报', '轩昂', '史官', '侍臣', '列阵','玉玺','车驾','老夫','伏兵','都尉','侍中','西凉','安民','张曰','文武','白旗',
'祖宗','寻思'} # 排除的词汇
#使用精确模式对文本进行分词
#words = jieba.lcut(txt)
counts = {} # 通过键值对的形式存储词语及其出现的次数
#得到 分词和出现次数
def getWordTimes():
# 分词,返回词性
poss = pseg.cut(txt)
for w in poss:
if w.flag != 'nr' or len(w.word) < 2 or w.word in excludes:
continue # 当分词长度小于2或该词词性不为nr(人名)时认为该词不为人名
elif w.word == '孔明' or w.word == '孔明曰' or w.word == '卧龙先生':
real_word = '诸葛亮'
elif w.word == '云长' or w.word == '关公曰' or w.word == '关公':
real_word = '关羽'
elif w.word == '玄德' or w.word == '玄德曰' or w.word == '玄德甚' or w.word == '玄德遂' or w.word == '玄德兵' or w.word == '玄德领' \
or w.word == '玄德同' or w.word == '刘豫州' or w.word == '刘玄德':
real_word = '刘备'
elif w.word == '孟德' or w.word == '丞相' or w.word == '曹贼' or w.word == '阿瞒' or w.word == '曹丞相' or w.word == '曹将军':
real_word = '曹操'
elif w.word == '高祖':
real_word = '刘邦'
elif w.word == '光武':
real_word = '刘秀'
elif w.word == '桓帝':
real_word = '刘志'
elif w.word == '灵帝':
real_word = '刘宏'
elif w.word == '公瑾':
real_word = '周瑜'
elif w.word == '伯符':
real_word = '孙策'
elif w.word == '吕奉先' or w.word == '布乃' or w.word == '布大怒' or w.word == '吕布之':
real_word = '吕布'
elif w.word == '赵子龙' or w.word == '子龙':
real_word = '赵云'
elif w.word == '卓大喜' or w.word == '卓大怒':
real_word = '董卓' # 把相同意思的名字归为一个人
else:
real_word = w.word
counts[real_word] = counts.get(real_word, 0) + 1
getWordTimes()
items = list(counts.items())
#进行降序排列 根据词语出现的次数进行从大到小排序
items.sort(key=lambda x: x[1], reverse=True)
#导出数据
#分词生成人物词频(写入文档)
def wordFreq(filepath,topn):
with codecs.open(filepath, "w", "utf-8") as f:
for i in range(topn):
word, count = items[i]
f.write("{}:{}\n".format(word, count))
#生成词频文件
wordFreq("三国演义词频_人名.txt",300)
#将txt文本里的数据转换为字典形式
fr = open('三国演义词频_人名.txt', 'r',encoding='utf-8' )
dic = {}
keys = [] # 用来存储读取的顺序
for line in fr:
# 去空白,并用split()方法返回列表
v = line.strip().split(':')
#print("v",v) # v ['诸葛亮', '1373']
#拼接字典 {'诸葛亮', '1373'}
dic[v[0]] = v[1]
keys.append(v[0])
fr.close()
#输出前几个的键值对
print("人物出现次数TOP",mainTop)
print(list(dic.items())[:mainTop])
# 绘图
# 人名列表 (用于人物关系图,pyecharts人物出场次数图)
list_name=list(dic.keys()) #人名
list_name_times=list(dic.values()) #提取字典里的数据作为绘图数据
#可视化人物出场次数
def creat_people_view():
bar = Bar()
bar.add_xaxis(list_name[0:mainTop])
bar.add_yaxis("人物出场次数",list_name_times)
bar.set_global_opts(title_opts=opts.TitleOpts(title="人物出场次数可视化图", subtitle="三国人物TOP"+str(mainTop)),
toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate":45}))
bar.set_series_opts(label_opts=opts.LabelOpts(position="top"))
bar.render_notebook() # 在 notebook 中展示
#make_snapshot(snapshot, bar.render(), "bar.png")
# 生成 html 文件
bar.render("三国演义人物出场次数可视化图.html")
# 生成词云
def creat_wordcloud():
bg_pic=imageio.imread('alice_mask.png')
wc=wordcloud.WordCloud(font_path='c:\Windows\Fonts\simhei.ttf',
background_color='white',
width=1000,height=800,
#stopwords=excludes,# 设置停用词
max_words=500,
mask=bg_pic # mask参数设置词云形状
)
# 从单词和频率创建词云
wc.generate_from_frequencies(counts)
# generate(text) 根据文本生成词云
#wc.generate(txt)
# 保存图片
wc.to_file('三国演义词云_人名.png')
# 显示词云图片
plt.imshow(wc)
plt.axis('off')
plt.show()
# 使用pyecharts 的方法生成词云
def creat_wordcloud_pyecharts():
wordsAndTimes = list(dic.items())
(
WordCloud()
.add(series_name="人物次数", data_pair=wordsAndTimes,
word_size_range=[20, 100],textstyle_opts=opts.TextStyleOpts(font_family="cursive"),)
.set_global_opts(title_opts=opts.TitleOpts(title="三国演义词云"))
.render("三国演义词云_人名.html")
)
# 使用pyecharts 的方法生成章回字数
def chapter_word():
# 进行章回切片
list2 = txt.split("------------")
chapter_list = [i for i in range((len(list2)))]
word_list = [len(i) for i in list2]
(
Line(init_opts=opts.InitOpts(width="1400px", height="700px"))
.add_xaxis(xaxis_data=chapter_list)
.add_yaxis(
series_name="章回字数",
y_axis=word_list,
markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"),
]
),
markline_opts=opts.MarkLineOpts(
data=[opts.MarkLineItem(type_="average", name="平均值")]
),
)
.set_global_opts(
title_opts=opts.TitleOpts(title="三国演义章回字数", subtitle=""),
tooltip_opts=opts.TooltipOpts(trigger="axis"),
toolbox_opts=opts.ToolboxOpts(is_show=True),
xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
)
.render("三国演义章回字数.html")
)
#颜色生成
colorNum = len(list_name[0:mainTop])
#print('颜色数',colorNum)
def randomcolor():
colorArr = ['1','2','3','4','5','6','7','8','9','A','B','C','D','E','F']
color = ""
for i in range(6):
color += colorArr[random.randint(0,14)]
return "#"+color
def color_list():
colorList = []
for i in range(colorNum):
colorList.append(randomcolor())
return colorList
# 解决中文乱码
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
#生成人物关系图
def creat_relationship():
# 人物节点颜色
colors = color_list()
Names=list_name[0:mainTop]
relations={}
#按段落划分,假设在同一段落中出现的人物具有共现关系
lst_para=(txt).split('\n')#lst_para是每一段
for text in lst_para:
for name_0 in Names:
if name_0 in text:
for name_1 in Names:
if name_1 in text and name_0!=name_1 and (name_1,name_0) not in relations:
relations[(name_0,name_1)]=relations.get((name_0,name_1),0)+1
maxRela=max([v for k,v in relations.items()])
relations={k:v / maxRela for k,v in relations.items()}
#return relations
plt.figure(figsize=(15,15))
# 创建无多重边无向图
G=nx.Graph()
for k,v in relations.items():
G.add_edge(k[0],k[1],weight=v)
#筛选权重大于0.6的边
elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight']>0.6]
#筛选权重大于0.3小于0.6的边
emidle=[(u,v) for (u,v,d) in G.edges(data=True) if (d['weight']>0.3) & (d['weight']<=0.6)]
#筛选权重小于0.3的边
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight']<=0.3]
#设置图形布局
pos=nx.spring_layout(G) # 用Fruchterman-Reingold算法排列节点(样子类似多中心放射状)
#设置节点样式
nx.draw_networkx_nodes(G,pos,alpha=0.8, node_size=1300,node_color=colors)
#设置大于0.6的边的样式
nx.draw_networkx_edges(G,pos,edgelist=elarge, width=2.5,alpha=0.9,edge_color='g')
#0.3~0.6
nx.draw_networkx_edges(G,pos,edgelist=emidle, width=1.5,alpha=0.6,edge_color='y')
#<0.3
nx.draw_networkx_edges(G,pos,edgelist=esmall, width=1,alpha=0.4,edge_color='b',style='dashed')
nx.draw_networkx_labels(G,pos,font_size=14)
plt.title("《三国演义》主要人物社交关系网络图")
# 关闭坐标轴
plt.axis('off')
#保存图表
plt.savefig('《三国演义》主要人物社交关系网络图.png',bbox_inches='tight')
plt.show()
def main():
# 人物出场次数可视化图
creat_people_view()
# 词云图
creat_wordcloud()
creat_wordcloud_pyecharts()
# 人物关系图
creat_relationship()
# 章回字数
chapter_word()
if __name__ == '__main__':
main()