CLDNN

import torch
import torch.nn as nn

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

class CLDNN(nn.Module):
    def __init__(self):
        super(CLDNN, self).__init__()
        # 定义第一个隐藏层
        self.conv1 = nn.Sequential(
            nn.ZeroPad2d((2, 0, 0, 0)),
            # kernel_size[0]--H   kernel_size[1]--W
            nn.Conv2d(1, 128, kernel_size=(1, 3)),
            nn.BatchNorm2d(128),
            nn.ReLU(),
        )

        # 定义第二个隐藏层
        self.conv2 = nn.Sequential(
            nn.ZeroPad2d((2, 0, 0, 0)),
            nn.Conv2d(128, 64, kernel_size=(1, 3)),
            nn.BatchNorm2d(64),
            nn.ReLU(),
        )

        # 定义第三个隐藏层
        self.conv3 = nn.Sequential(
            nn.ZeroPad2d((2, 0, 0, 0)),
            nn.Conv2d(64, 32, kernel_size=(4, 3)),
            nn.BatchNorm2d(32),
            nn.ReLU(),
        )

        # 定义第四个隐藏层
        self.conv4 = nn.Sequential(
            nn.ZeroPad2d((2, 0, 0, 0)),
            nn.Conv2d(32, 16, kernel_size=(1, 3)),
            nn.BatchNorm2d(16),
            nn.ReLU(),
        )

        # LSTM为长短时神经网络
        self.lstm = nn.LSTM(
            input_size=20,      # 这个地方根据输入数据维度不同会有变化
            hidden_size=100,
            num_layers=1,
            batch_first=True,  # 若为True,则第一个维度为batch
            bidirectional=True  # 如果为True,则为双向RNN;默认为False
        )

        # 全连接层
        self.classifier = nn.Sequential(
            nn.Linear(220, 50),   # 200 + lstm的input_size
            nn.Dropout(0.5),
            nn.ReLU(),
            nn.Linear(50, 11)
        )

    def forward(self, input):
        input = input.unsqueeze(1).to(device)

        # CNN计算结果
        conv1 = self.conv1(input)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)
        cnn_out = self.conv4(conv3)

        # 融合input和CNN的结果,一起送至RNN
        cnn_out = cnn_out.squeeze(2)
        cnn_out = cnn_out.permute(0, 2, 1)

        input = input.squeeze(1)
        input = input.permute(0, 2, 1)

        combine_input_cnn = torch.cat(
            [input, cnn_out], dim=2)

        rnn_in = combine_input_cnn

        # RNN计算结果
        rnn_out, _ = self.lstm(rnn_in)

        # 融合CNN和RNN的结果,一起送至DNN
        # [batchsize, 128, 200+20]
        conbime_cnn_rnn = torch.cat([combine_input_cnn, rnn_out], dim=2)

        z = self.classifier(conbime_cnn_rnn[:, -1, :])
        return z

if __name__ == "__main__":
    x = torch.randn(32, 2, 128)
    model = CLDNN()
    out = model(x)
    print(out)
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
PyTorch是一个流行的深度学习框架,具有强大的张量计算和自动微分功能。要在PyTorch中实现CLDNN(卷积长短时记忆循环神经网络)模型,首先需要定义并构建模型架构。 CLDNN结合了卷积神经网络(CNN)和长短时记忆循环神经网络(LSTM),主要用于处理时间序列和语音信号。 在PyTorch中,首先需要导入所需的模块和库,例如torch、torch.nn和torch.nn.functional。然后可以通过定义一个继承自torch.nn.Module的类来创建CLDNN模型。 在模型类中,可以定义CNN和LSTM的层,并在forward方法中将它们串联起来。在每个层中,需要定义输入维度、输出维度、激活函数等参数,并通过torch.nn.functional中的函数来进行卷积、池化、循环等操作。 接下来是数据的预处理和加载部分。可以使用PyTorch提供的Dataset和DataLoader来加载和处理训练数据。在数据加载过程中,需要对原始的时间序列数据进行预处理、归一化等操作,然后构建Dataset和DataLoader对象。 在模型训练过程中,可以使用PyTorch提供的优化器(如torch.optim.Adam)和损失函数(如交叉熵损失函数)来定义优化目标,并通过迭代训练数据来更新模型参数。 最后,通过在训练数据上进行多轮迭代训练,并在测试数据上进行评估,来验证CLDNN模型的性能和效果。 总之,在PyTorch中实现CLDNN模型,主要涉及模型的构建、数据的加载和处理、模型的训练和评估等步骤,通过PyTorch强大的张量计算和自动微分功能可以轻松地实现和优化CLDNN模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值