谱图理论(Spectral and Algebraic Graph Theory)| Chapter2: Eigenvalues and Optimization

上期介绍了谱图中的矩阵表示,其中矩阵M具有spreadsheet和operator的作用。当矩阵M作为做操作算子时,可以实现:(1)概率转移,;(2)将向量x转化为一个数(矩阵的二次型),

接下来,我们首先围绕矩阵的二次型给出了瑞丽熵的定义,并谱定理来证明Courant Fischer定理。然后,我们以与Courant Fischer几乎相同的形式证明了谱定理。

一、瑞丽熵

向量x相对于矩阵M的瑞丽熵定义为: 特征向量的瑞丽熵是其特征值:如果,则

瑞丽熵的定义为矩阵M关于向量ψ的二次型,并且对其做了归一化,以去除向量ψ模长对瑞丽熵的影响。

二、Courant-Fischer Theorem

Courant-Fischer定理告诉我们,使瑞丽熵最大化的向量x正是M的最大特征值的特征向量。事实上,它提供了对称矩阵所有特征值的类似特征。

2.1 Courant Fischer定理

定理2.1(Courant Fischer定理)设M是特征值为的对称矩阵。然后,

其中最大化和最小化在的子空间S和T上。

假设k=1,则 上式可写为

此时,左半边S是一维空间,所以空间里任意向量方向相同或者相反,所以矩阵M关于该空间内任意向量的瑞丽熵都相同(S空间中任意向量对矩阵M对的转化方向均相同,且瑞丽熵的分母去除了向量x长度对与瑞丽熵数值的影响)。所以,对于n维空间的各向量,矩阵M最大特征值对应的特征向量,能使矩阵M的瑞丽熵取到最大值,即为

右半边T是n维空间,对于中的任意向量,空间T存在与之方向相同的向量。右半边min符号并未起到实际作用。即在n维空间中,使瑞丽熵取到最大值的向量,为与特征向量平行的向量。

2.2 证明一

2.2 证明2(谱定理的证明)

定理2.2 设M是对称矩阵,设x是M的瑞丽熵取最大值时的非零向量,则,其中是M的最大特征值。相反,最小值由M的最小特征值的特征向量实现。

证明:由于瑞丽熵是齐次的,所以考虑单位向量x就足够了。由于单位向量的集合是一个封闭且紧凑的集合,因此在这个集合上达到了最大值。设x是最大化瑞利商的非零向量,则有:

所以:

.

若使梯度为0,则

.

,所以对应矩阵M的一个特征值。所以,取最大值时应对应M的最大特征值,即

接下来,通过将这个特征推广到M的所有特征值来证明谱定理。

定理2.3 设M是n维实对称矩阵。和正交单位向量,使得。此外,

并且,对于任意 ,有

类似地,

证明:

三、注意

通过最大化或最小化瑞利商来表征特征值仅适用于对称矩阵。非对称矩阵A的近似量是A的奇异向量和奇异值,即的特征向量,以及这些矩阵的特征值的平方根。

四、总结

本节介绍了瑞丽熵的定义,以及瑞丽熵的极值与矩阵特征向量和特征值的关系。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值