训练一个简单的卷积神经网络(CNN)来对CIFAR图像进行分类

如何训练一个简单的卷积神经网络(CNN)来对CIFAR图像进行分类

# 本教程演示如何训练一个简单的卷积神经网络(CNN)来对CIFAR图像进行分类。
# 因为本教程使用Keras顺序API,所以创建和训练我们的模型只需要几行代码。
import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt     # Matplotlib 是一个 Python 的 2D绘图库

# 下载并准备CIFAR10数据集
# CIFAR10数据集包含10个类中的60000个彩色图像,每个类中有6000个图像。
# 数据集分为50000个训练图像和10000个测试图像。这些类是互斥的,它们之间没有重叠。

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1  将像素值规格化为介于0和1之间
train_images, test_images = train_images / 255.0, test_images / 255.0

运行一下:
需要下载数据集,特别慢,复制下面链接去迅雷下载,很快

http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

下载下来的文件放到~/.keras/datasets/ 目录下,然后将文件名改名为cifar-10-batches-py.tar.gz
在这里插入图片描述

# 验证数据
# 为了验证数据集看起来是否正确,让我们绘制训练集中的前25个图像,并在每个图像下面显示类名。
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    # The CIFAR labels happen to be arrays,     CIFAR标签碰巧是数组,
    # which is why you need the extra index     所以你需要额外的索引
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

运行结果:
在这里插入图片描述

# 创建卷积基
# 下面的6行代码使用一个通用模式定义卷积基:Conv2D和MaxPooling2D层的堆栈作为输入,
# CNN采用形状张量(图像高度、图像宽度、颜色通道),忽略批大小。
# 如果您不熟悉这些维度,则颜色通道指(R、G、B)。
# 在本例中,您将配置我们的CNN来处理shape(32、32、3)的输入,
# 这是CIFAR图像的格式。可以通过将参数input_shape传递到第一层来完成此操作。
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# Let's display the architecture of our model so far.
model.summary()

运行结果:
在这里插入图片描述

上面,您可以看到每个Conv2D和MaxPooling2D层的输出都是一个三维形状张量(高度、宽度、通道)。随着网络的深入,宽度和高度维度往往会缩小。每个Conv2D层的输出信道的数量由第一个参数控制(例如,32或64)。通常,随着宽度和高度的缩小,您可以(通过计算)在每个Conv2D层中添加更多的输出通道。

在顶部添加密集层

为了完成我们的模型,您将把最后一个输出张量从卷积基(形状(4,4,64))馈入一个或多个密集层以执行分类。密集层以矢量作为输入(一维),而当前输出是三维张量。首先,将三维输出展平(或展开)为1D,然后在顶部添加一个或多个密集层。CIFAR有10个输出类,因此使用最后一个密集层,其中有10个输出和一个softmax激活。

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))
# 这是我们模型的完整架构。
model.summary()

在这里插入图片描述
如您所见,我们的(4,4,64)输出在经过两个密集层之前被展平成形状向量(1024)。

编译和训练模型

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

在这里插入图片描述

Evaluate the model评估模型

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print(test_acc)  

结果:
在这里插入图片描述
在这里插入图片描述
我们简单的CNN已经达到了超过70%的测试精度。对几行代码来说还不错!

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种在图像识别、自然语言处理等领域广泛应用的深度学习模型。在cifar-10图像分类任务中,我们可以使用CNN来实现高效准确的图像分类。 首先,我们需要准备cifar-10数据集。该数据集包含了10个类别的60000张32x32像素的彩色图像,其中50000张用于训练,10000张用于测试。我们可以使用Python的Keras库来加载数据集。 然后,我们可以定义一个CNN模型来对图像进行分类。该模型通常由多个卷积层和池化层组成。卷积层用于提取图像的特征,池化层用于减小特征图的大小。在最后一层之后,我们可以添加一个全连接层和一个softmax层来输出每个类别的概率分布。 下面是一个简单CNN模型实现: ```python from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense model = Sequential() # 第一层卷积层 model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) # 第一层池化层 model.add(MaxPooling2D(pool_size=(2, 2))) # 第二层卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) # 第二层池化层 model.add(MaxPooling2D(pool_size=(2, 2))) # 第三层卷积层 model.add(Conv2D(64, (3, 3), activation='relu')) # 全连接层 model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) ``` 接下来,我们可以编译模型训练数据集: ```python model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10, batch_size=64, validation_data=(x_test, y_test)) ``` 在训练完成后,我们可以使用测试集对模型进行评估: ```python loss, accuracy = model.evaluate(x_test, y_test) print('Test loss:', loss) print('Test accuracy:', accuracy) ``` 通过调整CNN的架构和超参数,我们可以进一步提高模型的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值