04-利用CNN对CIFAR图像进行分类


本例中展示了 如何训练一个简单的卷积神经网络 (CNN) 来对 CIFAR 图像进行分类。由于本教程使用的是 Keras Sequential API,创建和训练模型只需要几行代码。

1. CIFAR10数据集准备

CIFAR10 数据集包含 10 类,共 60000 张彩色图片,每类图片有 6000 张。**此数据集中 50000 个样例被作为训练集,剩余 10000 个样例作为测试集。**类之间相互独立,不存在重叠的部分。
首先我们需要导入相关的包:

import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

下载并准备CIFAR10数据集:

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
train_images, test_images = train_images/255.0, test_images/255.0  # 对图片进行归一化
print(len(train_images))  # 50000
print(len(test_images))  # 10000
# print(train_images.shape)  # (50000, 32, 32, 3)
# print(train_labels.shape)  # (50000, 1)

在这里插入图片描述
验证数据:为了验证数据集看起来是否正确,我们绘制训练集中的前 25 张图像并在每张图像下方显示类名称。

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10, 10))
for i in range(25):
    plt.subplot(5, 5, i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i])
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

在这里插入图片描述

2. 构造卷积神经网络模型

**CNN 将形状为 (image_height, image_width, color_channels) 的张量作为输入,**忽略批次大小。如果您不熟悉这些维度,color_channels 是指 (R,G,B)。在此示例中,您将配置 CNN 以处理形状为 (32, 32, 3) 的输入,即 CIFAR 图像的格式。您可以通过将参数 input_shape 传递给第一层来实现此目的。

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.summary()

在这里插入图片描述
在上面的结构中,您可以看到每个 Conv2D 和 MaxPooling2D 层的输出都是一个三维的张量 (Tensor),其形状描述了 (height, width, channels)。越深的层中,宽度和高度都会收缩。每个 Conv2D 层输出的通道数量 (channels) 取决于声明层时的第一个参数(如:上面代码中的 32 或 64)。这样,由于宽度和高度的收缩,您便可以(从运算的角度)增加每个 Conv2D 层输出的通道数量 (channels)。

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPool2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
# 增加Dense层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))

增加Dense层后,模型的框架如下所示:
在这里插入图片描述
网络摘要显示 (4, 4, 64) 输出在经过两个 Dense 层之前被展平为形状为 (1024) 的向量。

3. 编译并训练模型

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10,
                    validation_data=(test_images, test_labels))

训练结果如下所示:
在这里插入图片描述

4. 评估模型

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label='val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()

在这里插入图片描述
我们可以看到准确率是随着epoch的增加而增加的。我们用model.evaluate()来评估模型的准确率。

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(test_acc)  # 0.7170000076293945

我们可以将epoch数值改成50/100,观察模型的效果会如何变化?
当epoch为50时,准确率如下所示:
在这里插入图片描述
在这里插入图片描述
当epoch为100时,我们可以看到验证集准确率在第20-40个epoch中间呈现下降趋势(训练集准确率增长趋于缓慢)。
在这里插入图片描述
在这里插入图片描述
基于上述准确率的变化,我们将epoch设置为20,查看效果。
在这里插入图片描述
在这里插入图片描述
当epoch为20时,模型性能明显优于epoch为100时。我们认为,可能是因为当epoch=100时,模型过拟合。

上述我们构建的简单的CNN准确率已经达到了70%以上。对于只有几行的代码来说,效果不错!

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
深度学习(DL,Deep Learning)是机器学习(ML,Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI,Artificial Intelligence)。 [1] 深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 [1] 深度学习在搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语音、推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 [1] 深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法: [2] (1)基于卷积运算的神经网络系统,即卷积神经网络(CNN)。 [2] (2)基于多层神经元的自编码神经网络,包括自编码(Auto encoder)以及近年来受到广泛关注的稀疏编码两类(Sparse Coding)。 [2] (3)以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络权值的深度置信网络(DBN)。 [2] 通过多层处理,逐渐将初始的“低层”特征表示转化为“高层”特征表示后,用“简单模型”即可完成复杂的分类等学习任务。由此可将深度学习理解为进行“特征学习”(feature learning)或“表示学习”(representation learning)。 [3] 以往在机器学习用于现实任务时,描述样本的特征通常需由人类专家来设计,这成为“特征工程”(feature engineering)。众所周知,特征的好坏对泛化性能有至关重要的影响,人类专家设计出好特征也并非易事;特征学习(表征学习)则通过机器学习技术自身来产生好特征,这使机器学习向“全自动数据分析”又前进了一步。 [3] 近年来,研究人员也逐渐将这几类方法结合起来,如对原本是以有监督学习为基础的卷积神经网络结合自编码神经网络进行无监督的预训练,进而利用鉴别信息微调网络参数形成的卷积深度置信网络。与传统的学习方法相比,深度学习方法预设了更多的模型参数,因此模型训练难度更大,根据统计学习的一般规律知道,模型参数越多,需要参与训练的数据量也越大。 [2] 20世纪八九十年代由于计算机计算能力有限和相关技术的限制,可用于分析的数据量太小,深度学习在模式分析中并没有表现出优异的识别性能。自从2006年,Hinton等提出快速计算受限玻耳兹曼机(RBM)网络权值及偏差的CD-K算法以后,RBM就成了增加神经网络深度的有力工具,导致后面使用广泛的DBN(由Hin

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值