连续变量分箱


变量分箱主要是对连续变量离散化

对特征的一个优化过程

变量分箱(特征分箱)是一种特征工程方法,意在增强变量的可解释性与预测能力。变量分箱方法主要用于连续变量,对于变量取值较稀疏的离散变量也应该进行分箱处理。

比如借款人的地址信息往往非常稀疏,通常先对地址信息处理到省或市,用每个省或市的坏样本比率进行数值化,将数值化后的变量作为连续变量进行分箱.

1.变量分箱对模型的好处

  • 1.降低异常值的影响,增加模型的稳定性
    • 通过分箱来降低噪声,使模型鲁棒性更好
  • 2.缺失值作为特殊变量参与分箱,减少缺失值填补的不确定性(分箱还可以解决缺失值 )
    • 通常的做法是,离散特征将缺失值转为字符串作为特殊字符即可,
    • 而连续特征将缺失值作为特殊值即可
    • 在后面的代码中连续值填充-777,离散值填充NA
  • 3.增加变量的可解释性
    • 分箱的方法往往要配合变量编码使用,这就大大提高了变量的可解释性
  • 4.增加变量的非线性
    • 提高了模型的拟合能力
  • 5.增加模型的预测效果
    • 通常假设训练集和测试集满足同分布,分箱使连续变量离散化,更容易满足同分布的假设
    • 即减少模型在训练集的表现和测试集的偏差

2.分箱的局限

  • 1.同一箱内的样本具有同质性
        分箱的基本假设是分在一个箱内的样本(借款人)具有相同
        的风险等级,比如按年龄分箱的结果为{[18,25],[25,40],
        [40,55],[55,100]},也就是将年龄在 18~25 的借款人统一按照
        同一个数值变量来代替。对于树模型就减少了模型选择最优切分
        点的可选择范围,会对模型的预测能力产生影响,损失了模型的
        分辨能力
    
  • 2.需要专家经验支持

3.变量分箱要注意的问题

分箱分的不好的话有些值的预测能力会忽略 会影响模型的预测能力 削弱模型的预测能力

  • 1.分箱结果不宜过多
    • 分箱过多导致特征过于稀疏,编码后的特征维度快速增加,使特征更加稀疏,会降低模型的预测效果
    • 极端例子 一共100个样本 分了100个箱子 严重失衡
  • 2.分箱结果不宜过少
    • 每个箱子默认是同质的即风险等级相同
    • 如果分箱过少则可能会造成模型辨识度过低
    • 例如,年龄分箱结果为{[18,50],[50,100]},认为18~50岁的借款人风险水平相同这是不符合业务解释的。
  • 3.分箱后单调性的要求

4.变量分箱的流程

变量分箱的目的是增加变量的预测能力或减少变量的自身冗余。

当预测能力不再提升或冗余性不再降低时,则分箱完毕。

因此,分箱过程是一个优化过程,所有满足上述要求的指标都可以用于变量分箱,这个指标也可叫作目标函数,可以终止或改变分箱的限制就是优化过程的约束条件

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-pyiBCiM8-1605835416873)(4F7CD5683A394E069C1ADB0F38DFDBE2)]

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LzdicX5Y-1605835416877)(04B02468141141838FEE1667DA6CA2CB)]

5.卡方分箱

  • 基本思想:

自底向上的分箱方法,相邻区间合并计算卡方值,卡方值越小说明两个区间的类分布越相似,合并两个区间

由设定的阈值决定(自由度、置信度),小于阈值就分箱

自底向上:由多至少逐层合并的过程

自顶向下是由少至多逐层切分的过程

数值特征离散化

特征之间强相关不好,但是某个特征和标签相关是好的

强相关:一个特征可以用另一个特征线性表示
  • 解释性强
  • 能解决多分类场景的分箱
  • 缺点是计算量大
    • 需要先对数值型变量离散化,然后迭代的计算卡方值

公式:

在这里插入图片描述

在这里插入图片描述

上述过程就是一个卡方检验的过程,因此,根据置信度和自由度可以计算出卡方检验的阈值,当计算的卡方值小于阈值,则认为相邻区间的类分布情况相似,可进行合并。其中自由度为类别个数减 1,即本例中的自由度为 1;置信度可以使用 0.9、0.95和 0.99。

6.KS分箱

Best-KS 分箱方法是一种自顶向下的分箱方法。与卡方分箱相比,Best-KS分箱方法只是目标函数采用了 KS 统计量,其余分箱步骤没有差别

注意KS只能处理连续变量

可以用于模型对好坏样本的区分能力

  • 基本思想:

根据KS曲线,取TPR和FPR之间的最大差值,就是KS统计率,也就是KS分箱最优切分点的位置

  • KS曲线
    • 横轴就是认为设定的阈值,就是区分好坏样本的界限
    • 纵轴:一个是真正率TPR,一个是假正率FPR
    • 之间的差值一定程度反映模型对好坏样本的区分能力
    • 我们希望真正率高一点,假正率低一点(好样本多一点,坏样本少一点)
    • 真正率:正样本预测数 / 正样本实际数
      • TP /(TP + FN)
    • 假正率:被预测为正的负样本结果数 / 负样本实际数
      • FP /(FP + TN)

KS分箱过程也就是递归的找最优切分点的过程

KS值越大 模型的区分能力越强

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-o3VAMG0J-1605835416896)(E9D7738A4D014AD79855824850C29D6F)]

7.混淆矩阵概念复习

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UbulXueg-1605835416899)(484D5EC27DB840E0B1283A633CAAC47E)]

  • 召回率,真正率(recall):TP/(TP+FN)
  • 准确率(accuracy):(TP+TN) / (TP+TN+FP+FN)
    • 预测正确的 / 总样本数
  • 精确率(precision):TP / (TP+FP)
    • 预测为1且正确 / 所有预测为1的样本数

8.最优IV分箱

最优 IV 分箱方法也是自顶向下的分箱方式,其目标函数为 IV 值

IV 值其本质是对称化的 K-L 距离,即在切分点处分裂得到的两部分数据中,选择好坏样本的分布差异最大点作为最优切分点。分箱结束后,计算每个箱内的 IV 值加和得到变量的 IV 值,可以用来刻画变量对目标值的预测能力。即变量的 IV 值越大,则对目标变量的区分能力越强,因此,IV 值还可以用来做变量选择。

9.基于树的最优分箱方法

基于树的分箱方法借鉴了决策树在树生成的过程中特征选择(最优分裂点)的目标函数来完成变量分箱过程,可以理解为单变量的决策树模型。决策树采用自顶向下递归的方法进行树的生成,每个节点的选择目标是为了分类结果的纯度更高,也就是样本的分类效果更好。因此,不同的损失函数有不同的决策树,ID3采用信息增益方法,C4.5 采用信息增益比,CART 采用基尼系数(Gini)指标

10.分箱框架源码(卡方、最优IV、信息增益)

# -*- coding: utf-8 -*-
import os
import pandas as pd
import numpy as np
import pickle
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import warnings

warnings.filterwarnings("ignore")  ##忽略警告


# 注意sklearn版本要在v.20.0以上,不同版本函数的位置会不同。
def data_read(data_path, file_name):
    df = pd.read_csv(os.path.join(data_path, file_name), delim_whitespace=True, header=None, engine='python')
    # 变量重命名
    columns = ['status_account', 'duration', 'credit_history', 'purpose', 'amount',
               'svaing_account', 'present_emp', 'income_rate', 'personal_status',
               'other_debtors', 'residence_info', 'property', 'age',
               'inst_plans', 'housing', 'num_credits',
               'job', 'dependents', 'telephone', 'foreign_worker', 'target']
    df.columns = columns

    # 将标签变量由状态1,2转为0,1;0表示好用户,1表示坏用户
    df.target = df.target - 1

    # 数据分为data_train和 data_test两部分,训练集用于得到编码函数,验证集用已知的编码规则对验证集编码
    # x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
    # stratify: 依据标签y,按原数据y中各类比例,分配给train和test,使得train和test中各类数据的比例与原数据集一样
    data_train, data_test = train_test_split(df, test_size=0.2, random_state=0, stratify=df.target)
    return data_train, data_test


# one—hot编码
# df: 数据框  data_path_1:编码模型保存的位置  flag:数据集
def onehot_encode(df, data_path_1, flag='train'):
    # reset_index:重置索引, drop=True:不想保留原来的index
    df = df.reset_index(drop=True)

    # 判断数据集是否存在缺失值  如果是进行缺失值填补
    # df.isnull().any() 判断哪些列存在缺失值
    if sum(df.isnull().any()) > 0:
        # 数值型和字符串型特征拿出来
        numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        var_numerics = df.select_dtypes(include=numerics).columns
        var_str = [i for i in df.columns if i not in var_numerics]

        # 数据类型的缺失值用-77777填补
        if len(var_numerics) > 0:
            df.loc[:, var_numerics] = df[var_numerics].fillna(-7777)

        # 字符串类型的缺失值用NA填补
        if len(var_str) > 0:
            df.loc[:, var_str] = df[var_str].fillna('NA')

    # pickle.dump(obj, file, [,protocol])  序列化对象,将对象obj保存到文件file中去
    # 参数protocol是序列化模式,默认是0(ASCII协议,表示以文本的形式进行序列化)
    if flag == 'train':
        enc = OneHotEncoder(dtype='int').fit(df)
        # 保存编码模型
        with open(os.path.join(data_path_1, 'onehot.pkl'), 'wb') as save_model:
            pickle.dump(enc, save_model, 0)

        df_return = pd.DataFrame(enc.transform(df).toarray())
        df_return.columns = enc.get_feature_names(df.columns)

    elif flag == 'test':
        # 测试数据编码
        with open(os.path.join(data_path_1, 'onehot.pkl'), 'rb') as read_model:
            onehot_model = pickle.load(read_model)

        # 如果训练集无缺失值,测试集有缺失值则将该样本删除
        var_range = onehot_model.categories_  # 训练集one-hot编码后的类别种类
        var_name = df.columns
        del_index = []
        for i in range(len(var_range)):
            if 'NA' not in var_range[i] and 'NA' in df[var_name[i]].unique():
                index = np.where(df[var_name[i]] == 'NA')
                del_index.append(index)
            elif -7777 not in var_range[i] and -7777 in df[var_name[i]].unique():
                index = np.where(df[var_name[i]] == -7777)
                del_index.append(index)

        # 删除样本
        if len(del_index) > 0:
            del_index = np.unique(del_index)
            df = df.drop(del_index)
            print('训练集无缺失值,但测试集有缺失值,第{0}条样本被删除'.format(del_index))
        df_return = pd.DataFrame(onehot_model.transform(df).toarray())
        df_return.columns = onehot_model.get_feature_names(df.columns)

    elif flag == 'transform':
        # 编码数据值转化为原始变量
        with open(os.path.join(data_path_1, 'onehot.pkl'), 'rb') as read_model:
            onehot_model = pickle.load(read_model)

        # 逆变换
        df_return = pd.DataFrame(onehot_model.inverse_transform(df))
        df_return.columns = np.unique(['_'.join(i.rsplit('_')[:-1]) for i in df.columns])

    return df_return


# 标签编码
def label_encode(df, data_path_1, flag='train'):
    if flag == 'train':
        enc = LabelEncoder().fit(df)
        # 保存编码模型
        with open(os.path.join(data_path_1, 'labelcode.pkl'), 'wb') as save_model:
            pickle.dump(enc, save_model, 0)

        df_return = pd.DataFrame(enc.transform(df))
        df_return.name = df.name

    elif flag == 'test':
        # 测试数据编码
        with open(os.path.join(data_path_1, 'labelcode.pkl'), 'rb') as read_model:
            label_model = pickle.load(read_model)

        df_return = pd.DataFrame(label_model.transform(df))
        df_return.name = df.name

    elif flag == 'transform':
        # 编码数据值转化为原始变量
        with open(os.path.join(data_path_1, 'labelcode.pkl'), 'rb') as read_model:
            label_model = pickle.load(read_model)

        # 逆变换
        df_return = pd.DataFrame(label_model.inverse_transform(df))
    return df_return


# 自定义映射
def dict_encode(df, data_path_1):
    # 自定义映射
    embarked_mapping = {}
    embarked_mapping['status_account'] = {'NA': 1, 'A14': 2, 'A11': 3, 'A12': 4, 'A13': 5}
    embarked_mapping['svaing_account'] = {'NA': 1, 'A65': 1, 'A61': 3, 'A62': 5, 'A63': 6, 'A64': 8}
    embarked_mapping['present_emp'] = {'NA': 1, 'A71': 2, 'A72': 5, 'A73': 6, 'A74': 8, 'A75': 10}
    embarked_mapping['property'] = {'NA': 1, 'A124': 1, 'A123': 4, 'A122': 6, 'A121': 9}

    df = df.reset_index(drop=True)

    # 判断数据集是否存在缺失值
    if sum(df.isnull().any()) > 0:
        df = df.fillna('NA')

    # 字典映射
    var_dictEncode = []
    for i in df.columns:
        col = i + '_dictEncode'
        df[col] = df[i].map(embarked_mapping[i])
        var_dictEncode.append(col)
    return df[var_dictEncode]


# WOE编码
# 返回某个特征的woe映射后的df、woe字典、iv值
# x:特征   y:类别   target:正样本为1
def woe_cal_trans(x, y, target=1):
    # 计算总体的正负样本数
    p_total = sum(y == target)  # 正样本数
    n_total = len(x) - p_total  # 负样本数
    value_num = list(x.unique())  # 去重后的总数
    woe_map = {}
    iv_value = 0
    for i in value_num:  # 这个特征每种取值的woe值
        # 计算该变量取值箱内的正负样本总数
        y1 = y[np.where(x == i)[0]]
        p_num_1 = sum(y1 == target)
        n_num_1 = len(y1) - p_num_1
        # 计算占比
        # bad_1 = p_num_1 / p_total  # 坏样本分布率
        # good_1 = n_num_1 / n_total  # 好样本分布率
        good_1 = p_num_1 / p_total  # 坏样本分布率
        bad_1 = n_num_1 / n_total  # 好样本分布率
        if bad_1 == 0:
            bad_1 = 1e-5
        elif good_1 == 0:
            good_1 = 1e-5
        woe_map[i] = np.log(bad_1 / good_1)  # woe值
        iv_value += (bad_1 - good_1) * woe_map[i]  # iv值
    x_woe_trans = x.map(woe_map)
    x_woe_trans.name = x.name + "_woe"

    return x_woe_trans, woe_map, iv_value


# WOE编码映射
def woe_encode(df, data_path_1, varnames, y, filename, flag='train'):
    """
    Param:
    df: 待编码数据
    data_path_1 :存取文件路径
    varnames: 变量列表
    y:  目标变量
    filename:编码存取的文件名
    flag: 选择训练还是测试
    ---------------------------------------
    Return:
    df: 编码后的数据,包含了原始数据
    woe_maps: 编码字典
    iv_values: 每个变量的IV值
    var_woe_name: 每个特征拼接woe的列名
    """
    df = df.reset_index(drop=True)  # 重置索引,不保留原来的索引

    # 判断数据集是否存在缺失值
    if sum(df.isnull().any()) > 0:
        numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
        var_numerics = df.select_dtypes(include=numerics).columns  # 数值型特征
        var_str = [i for i in df.columns if i not in var_numerics]  # 字符串型特征
        # 数据类型的缺失值用-77777填补
        if len(var_numerics) > 0:
            df.loc[:, var_numerics] = df[var_numerics].fillna(-7777)
        # 字符串类型的缺失值用NA填补
        if len(var_str) > 0:
            df.loc[:, var_str] = df[var_str].fillna('NA')

    if flag == 'train':
        iv_values = {}  # 保存每个特征的iv值
        woe_maps = {}  # 保存每个特征的woe值
        var_woe_name = []
        for var in varnames:  # 遍历每一个特征
            x = df[var]
            # 变量映射
            x_woe_trans, woe_map, info_value = woe_cal_trans(x, y)
            var_woe_name.append(x_woe_trans.name)
            df = pd.concat([df, x_woe_trans], axis=1)  # 按行拼接woe值
            woe_maps[var] = woe_map
            iv_values[var] = info_value

        # 保存woe映射字典
        with open(os.path.join(data_path_1, filename + '.pkl'), 'wb') as save_woe_dict:
            pickle.dump(woe_maps, save_woe_dict, 0)

        return df, woe_maps, iv_values, var_woe_name

    elif flag == 'test':
        # 测试数据编码
        with open(os.path.join(data_path_1, filename + '.pkl'), 'rb') as read_woe_dict:
            woe_dict = pickle.load(read_woe_dict)

        # 如果训练集无缺失值,测试集有缺失值则将该样本删除
        woe_dict.keys()
        del_index = []
        for key, value in woe_dict.items():
            if 'NA' not in value.keys() and 'NA' in df[key].unique():
                index = np.where(df[key] == 'NA')
                del_index.append(index)
            elif -7777 not in value.keys() and -7777 in df[key].unique():
                index = np.where(df[key] == -7777)
                del_index.append(index)
        # 删除样本
        if len(del_index) > 0:
            del_index = np.unique(del_index)
            df = df.drop(del_index)
            print('训练集无缺失值,但测试集有缺失值,该样本{0}删除'.format(del_index))

        # WOE编码映射
        var_woe_name = []
        for key, value in woe_dict.items():
            val_name = key + "_woe"
            df[val_name] = df[key].map(value)
            var_woe_name.append(val_name)

        return df, var_woe_name


if __name__ == '__main__':
    path = r'G:\A1\python_workspace\finance_code\chapter5\\'
    data_path = os.path.join(path, 'data')
    file_name = 'german.csv'
    # 读取数据
    data_train, data_test = data_read(data_path, file_name)
    # 不可排序变量
    var_no_order = ['credit_history', 'purpose', 'personal_status', 'other_debtors',
                    'inst_plans', 'housing', 'job', 'telephone', 'foreign_worker']

    # x_woe_trans, woe_map, iv_value = woe_cal_trans(data_train['job'], data_test['target'])
    # print(x_woe_trans)
    # print(woe_map)
    # print(iv_value)

    # one-hot编码
    # 训练数据编码
    data_train.credit_history[882] = np.nan
    data_train_encode = onehot_encode(data_train[var_no_order], data_path, flag='train')

    # 测试集数据编码
    data_test.credit_history[529] = np.nan
    data_test.purpose[355] = np.nan
    data_test_encode = onehot_encode(data_test[var_no_order], data_path, flag='test')

    # 查看编码逆变化后的原始变量名
    df_encoded = data_test_encode.loc[0:4]
    data_inverse = onehot_encode(df_encoded, data_path, flag='transform')
    print(data_inverse)

    # 哑变量编码
    data_train_dummies = pd.get_dummies(data_train[var_no_order])
    data_test_dummies = pd.get_dummies(data_test[var_no_order])
    print(data_train_dummies.columns)

    # 可排序变量
    # 注意,如果分类变量的标签为字符串,这是需要将字符串数值化才可以进行模型训练,标签编码其本质是为
    # 标签变量数值化而提出的方法,因此,其值支持单列数据的转化操作,并且转化后的结果是无序的。
    # 因此有序变量统一用字典映射的方式完成。
    var_order = ['status_account', 'svaing_account', 'present_emp', 'property']

    # 标签编码
    # 训练数据编码
    data_train_encode = label_encode(data_train[var_order[1]], data_path, flag='train')

    # 验证集数据编码
    data_test_encode = label_encode(data_test[var_order[1]], data_path, flag='test')

    # 查看编码你变化后的原始变量名
    # 后面再改一下
    df_encoded = data_test_encode
    data_inverse = label_encode(df_encoded, data_path, flag='transform')

    # 自定义映射
    # 训练数据编码
    data_train.credit_history[882] = np.nan
    data_train_encode = dict_encode(data_train[var_order], data_path)

    # 测试集数据编码
    data_test.status_account[529] = np.nan
    data_test_encode = dict_encode(data_test[var_order], data_path)
    print(data_test_encode)

    # WOE编码
    # 训练集WOE编码
    df_train_woe, dict_woe_map, dict_iv_values, var_woe_name = woe_encode(data_train, data_path, var_no_order,
                                                                          data_train.target, 'dict_woe_map',
                                                                          flag='train')
    print(df_train_woe, '\n')
    print(dict_woe_map, '\n')
    print(dict_iv_values, '\n')
    print(var_woe_name, '\n')

    # 测试集WOE编码
    df_test_woe, var_woe_name = woe_encode(data_test, data_path, var_no_order, data_train.target, 'dict_woe_map',
                                           flag='test')

    print(df_train_woe)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WGS.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值