原理就是不一次性把文件数据读入内存中,而是分多次
1.指定chunksize分块读取文件
read_csv
和 read_table
有一个 chunksize 参数,用以指定一个块大小(每次读取多少行),返回一个可迭代的 TextFileReader 对象。
table=pd.read_table(path+'kuaishou.txt',sep='\t',chunksize=1000000)
for df in table:
对df处理
#如df.drop(columns=['page','video_id'],axis=1,inplace=True)
#print(type(df),df.shape)打印看一下信息
我这里又对文件进行了划分,分成若干个子文件分别处理(没错,to_csv也同样有chunksize参数)
2.指定iterator=True
iterator=True
同样返回的是TextFileReader对象
reader = pd.read_table('tmp.sv', sep='\t', iterator=True)
df=reader.get_chunk(10000)
#通过get_chunk(size),返回一个size行的块
#接着同样可以对df处理
example:
# 数据读取,因数据量比较大,采用分批加载
if os.path.exists(file_path):
data = pd.read_csv(file_path, sep=',', engine='python', iterator=True) # iterator=True 返回一个TextFileReader对象
chunk_size = 1000000
chunks = []
loop = True
while loop:
try:
chunk = data.get_chunk(chunk_size) # 通过get_chunk返回一个size条记录。也可以在read_csv的时候不指定iterator=True,指定chunksize=size
chunks.append(chunk)
# print('chunks: %d' % len(chunks))
except StopIteration:
loop = False
print('Iteration is stopped.')
print('Start concat...')
df = pd.concat(chunks, ignore_index=True)
print('file %s have %d data' % (filename, df.shape[0]))
return df
else:
print("Don't have this file!")
return None
https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#io-read-csv-table