分析iPhone步数数据

本文作者Ross分享了如何使用pandas和ggplot分析iPhone的步数数据。通过QS Access应用导出数据,然后利用pandas的时间序列工具进行数据整理,包括降低取样频率到天、周和月,发现步数的上升趋势。作者还探索了周末与工作日的步数差异,以及搬家对步数的影响,鼓励读者也尝试分析自己的步数数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自白书

我叫Ross,沉迷于计算步数。行走的那种。这种沉迷带来的是经常性打开iPhone上的计步应用,查看步数上升,保证我的步数超过了10,000 (我妈妈说,那是一个神奇的数字)。幸运的是,在大多数的日子里,住在纽约让这个目标容易实现。

在这篇文章中,我会告诉你如何使用pandas时间序列和ggplot来分析我的iPhone步数数据。我在Python中使用Rodeo来进行所有的数据科学工作,它是用于数据科学的Yhat IDE。

收集数据

正如所有正经的数据迷,我希望能够将数据从手机导出以用于分析。Quantified Self Labs的牛人推出了一个名为QS Access的应用,它让检索这些数据不在话下!

下面是几个导出数据的截图。

 

QS Access应用导出一个CSV文件,它包含3列:一个start时间戳,一个finish时间戳和期间的steps (count)。有一个选项,用来生成每小时/每天的数据行。为什么不从小时开始,看看情况如何 —— 更大的数据总是更好,对不对?

TO THE DATAS!

我们的分析将利用pandas中内置的时间序列工具。当Wes McKinney开始pandas项目时,他正为一家投资管理公司工作,而这个行业广泛依赖于时间序列分析。结果,pandas自带了这个领域的全面功能。

此时,有一些关于导入这个数据其他注意事项。

首先,我们已经知道我们拥有时间序列数据,因此,我们可以通过使用parse_dates参数告诉pandas。

CSV中的结束时间数据并不是特别有趣,因为我们有开始时间,并且还有每小时的频率,因此,可以用usecols来忽略它。

最后,设置开始时间 (col 0) 为索引列,获得一个DateTimeIndex,这在后面将让我们的工作更容易。

df_hour = pd.read_csv('health_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值