Bayes Loss
- 人群计数的技术路线:
-
-
Bayes Loss一文中针对损失函数部分进行改进。考虑到传统生成真值图的方法会带来一定的误差,所以直接使用标注点信息。为了将标注点信息与生成的估计密度图上进行数值匹配,故采取贝叶斯估计中后验概率蒙版,与估计密度图相乘再相加,得到一个期望值。这个期望值表示yn在整个密度图中出现的概率。
-
-
由于期望该点有人的概率是1,因此BayesLoss可以表示为:
-
其中E[Cn]的求法如下:
-
-
在测试阶段,由于没有标注信息,不知道目标点的空间位置Zn,以及后验概率。但是对E[Cn]进行求和时,可以将两个加法符号互换。故相当于是直接的对估计密度图求和。
-
-
考虑到背景噪音,将背景噪音作为一个点y0,并且为了得到背景点的空间位置,引入一个动态的背景哑元。
-
- 总结:两字,优秀!