线性方程组

目录:点我

思维导图下载:点我

线性方程组

一、概念

  1. 方程组 (1) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋮                 ⋮                 ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m . \left\{\begin{matrix}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\\vdots~~~~~~~~~~~~~~~\vdots~~~~~~~~~~~~~~~\vdots\\a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m.\end{matrix}\right. a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,                              am1x1+am2x2++amnxn=bm. 称为 n n n 个未知数 m m m 个方程的非齐次线性方程组,其中 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 代表 n n n 个未知量, m m m 是方程的个数, m m m 可以等于 n n n ,也可以大于 n n n 或者小于 n n n a i j a_{ij} aij 是第 i ( i = 1 , 2 , ⋯   , m ) i(i=1,2,\cdots,m) i(i=1,2,,m) 个方程中 x j ( j = 1 , 2 , ⋯   , n ) x_j(j=1,2,\cdots,n) xj(j=1,2,,n) 的系数, b i ( i = 1 , 2 , ⋯   , m ) b_i(i=1,2,\cdots,m) bi(i=1,2,,m) 是第 i i i 个方程的常数项。
  2. 如果 b i = 0 ( ∀ i = 1 , 2 , ⋯   , m ) b_i=0(\forall i=1,2,\cdots,m) bi=0(i=1,2,,m) ,则称方程组 (2) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 , ⋮                 ⋮                 ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0. \left\{\begin{matrix}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=0,\\a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=0,\\\vdots~~~~~~~~~~~~~~~\vdots~~~~~~~~~~~~~~~\vdots\\a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=0.\end{matrix}\right. a11x1+a12x2++a1nxn=0,a21x1+a22x2++a2nxn=0,                              am1x1+am2x2++amnxn=0. 为齐次线性方程组。它是方程组 (1) 的导出组。
  3. 若将一组数 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots,c_n c1,c2,,cn 分别代替方程组 (1) 中的 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn ,使式 (1) 中 m m m 个等式都成立,则称有序数组 [ c 1 , c 2 , ⋯   , c n ] [c_1,c_2,\cdots,c_n] [c1,c2,,cn] 是方程组 (1) 的一组解。解方程就是要找出方程组的全部解。
  4. 线性方程组 (1) 的全体系数及常数项所构成的矩阵 A ˉ = [ a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ] \bar A=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}&b_1\\a_{21}&a_{22}&\cdots&a_{2n}&b_2\\\vdots&\vdots&&\vdots&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\end{bmatrix} Aˉ=a11a21am1a12a22am2a1na2namnb1b2bm称为方程组 (1) 的增广矩阵,而由全体系数组成的矩阵 A ˉ = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ] \bar A=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{m1}&a_{m2}&\cdots&a_{mn}\end{bmatrix} Aˉ=a11a21am1a12a22am2a1na2namn 称为方程组 (1) 的系数矩阵。
  5. 方程组 (1) 可以用矩阵表示为: A x = b Ax=b Ax=b ,其中 x = [ x 1 , x 2 , ⋯   , x n ] T x=[x_1,x_2,\cdots,x_n]^T x=[x1,x2,,xn]T b = [ b 1 , b 2 , ⋯   , b m ] T b=[b_1,b_2,\cdots,b_m]^T b=[b1,b2,,bm]T .
  6. 如果两个方程组有相同的解集合,则称它们是同解方程组。

二、定义

1. 下列三种变换称为线性方程组的初等变换:

  • 用一个非零常数乘方程的两边;
  • 把方程的 k k k 倍加到另一方程上;
  • 互换两个方程的位置。

线性方程组经初等变换化为阶梯型方程组后,每个方程中的第一个未知量通常称为主变量,其余的未知量称为自由变量。

2.基础解系:

向量组 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn 称为齐次线性方程组 A x = 0 Ax=0 Ax=0 的基础解系,如果:

  • η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn A x = 0 Ax=0 Ax=0 的解;
  • η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn 线性无关;
  • A x = 0 Ax=0 Ax=0 的任一解都可由 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn 线性表出。

如果 η 1 , η 2 , ⋯   , η n \eta_1,\eta_2,\cdots,\eta_n η1,η2,,ηn 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的一组基础解系,那么对任意常数 c 1 , c 2 , ⋯   , c t c_1,c_2,\cdots,c_t c1,c2,,ct c 1 η 1 + c 2 η 2 + ⋯ + c t η t c_1\eta_1+c_2\eta_2+\cdots+c_t\eta_t c1η1+c2η2++ctηt 是齐次方程组 A x = 0 Ax=0 Ax=0 的通解。

注意: A x = 0 Ax=0 Ax=0 的基础解系是不唯一的。

三、定理

1. 定理:

线性方程组的初等行变换把线性方程组变成与它同解的方程组。

2. 定理:

n n n 元线性方程组为 (1) ,对它的增广矩阵施行高斯消元法,得到阶梯形矩阵: A ˉ → ⋯ → [ c 11 c 12 ⋯ c 1 r ⋯ c 1 n ∣ d 1 c 22 ⋯ c 2 r ⋯ c 2 n ∣ d 2 ⋱ ⋮ ⋮ ∣ ⋮ c r r ⋯ c r n ∣ d r 0 ⋯ 0 ∣ d r + 1 ⋱ ⋮ ∣ ⋮ 0 ∣ 0 ] \bar A\to\cdots\to\begin{bmatrix}c_{11}&c_{12}&\cdots&c_{1r}&\cdots&c_{1n}&|&d_1\\&c_{22}&\cdots&c_{2r}&\cdots&c_{2n}&|&d_2\\&&\ddots&\vdots&&\vdots&|&\vdots\\&&&c_{rr}&\cdots&c_{rn}&|&d_r\\&&&0&\cdots&0&|&d_{r+1}\\&&&&\ddots&\vdots&|&\vdots\\&&&&&0&|&0\end{bmatrix} Aˉc11c12c22c1rc2rcrr0c1nc2ncrn00d1d2drdr+10
如果 d r + 1 ≠ 0 d_{r+1\ne0} dr+1=0 ,方程组 (1) 无解;如果 d r + 1 = 0 d_{r+1}=0 dr+1=0 ,方程组有解,而且当 r = n r=n r=n 时有唯一解,当 r < n r<n r<n 时有无穷多解。

3. 等价组:

  • 齐次方程组 (2) 有非零解;
  • r ( A ) < n r(A)<n r(A)<n
  • A A A 的列向量线性相关。
  • 推论:当 m < n m<n m<n (即方程的个数 < 未知数的个数)时,齐次线性方程组 (2) 必有非零解。
  • 推论:当 m = n m=n m=n 时,齐次线性方程组 (2) 有非零解的充分必要条件是行列式 ∣ A ∣ = 0 |A|=0 A=0

4. 定理:

设齐次线性方程组 (2) 系数矩阵的秩 r ( A ) = r < n r(A)=r<n r(A)=r<n ,则 A x = 0 Ax=0 Ax=0 的基础解系由 n − r ( A ) n-r(A) nr(A) 个线性无关的解向量所构成。

5. 有解判定定理:

非齐次线性方程组 A x = b Ax=b Ax=b 有解的充分必要条件是其系数矩阵和增广矩阵的秩相等,即 r ( A ) = r ( A ˉ ) r(A)=r(\bar A) r(A)=r(Aˉ).

r ( A ) = r ( A ˉ ) = n r(A)=r(\bar A)=n r(A)=r(Aˉ)=n ,则方程组有唯一解;

r ( A ) = r ( A ˉ ) < n r(A)=r(\bar A)<n r(A)=r(Aˉ)<n ,则方程组有无穷多解。

等价组:

  • 非齐次线性方程组 A x = b Ax=b Ax=b 无解;
  • r ( A ) + 1 = r ( A ˉ ) r(A)+1=r(\bar A) r(A)+1=r(Aˉ)
  • b b b 不能由 A A A 的列向量线性表出。

6. 解的性质:

  • 如果 η 1 , η 2 \eta_1,\eta_2 η1,η2 是齐次线性方程组 A x = 0 Ax=0 Ax=0 的两个解,那么其线性组合仍是该齐次线性方程组 A x = 0 Ax=0 Ax=0 的解。
  • 如果 α , β \alpha,\beta α,β 是线性方程组 A x = b Ax=b Ax=b 的两个解,则 α − β \alpha-\beta αβ 是导出组 A x = 0 Ax=0 Ax=0 的解。
  • 如果 α \alpha α 是线性方程组 A x = b Ax=b Ax=b 的解, η \eta η 是导出组 A x = 0 Ax=0 Ax=0 的解,则 α + η \alpha+\eta α+η A x = b Ax=b Ax=b 的解。

7. 解的结构:

对非齐次线性方程组 A x = b Ax=b Ax=b ,若 r ( A ) = r ( A ˉ ) = r r(A)=r(\bar A)=r r(A)=r(Aˉ)=r ,且已知 η 1 , η 2 , ⋯   , η n − r \eta_1,\eta_2,\cdots,\eta_{n-r} η1,η2,,ηnr 是导出组 A x = b Ax=b Ax=b ξ 0 \xi_0 ξ0 A x = b Ax=b Ax=b 的某个已知解,则 A x = b Ax=b Ax=b 的通解为: ξ 0 + c 1 η 1 + c 2 η 2 + ⋯ + c n − r η n − r \xi_0+c_1\eta_1+c_2\eta_2+\cdots+c_{n-r}\eta_{n-r} ξ0+c1η1+c2η2++cnrηnr其中 c 1 , c 2 , ⋯   , c n − r c_1,c_2,\cdots,c_{n-r} c1,c2,,cnr 为任意常数。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值