【Linear Algebra】线性方程组

4. 线性方程组

本文重点在知识归纳,不帮助理解

4.1 克拉默法则

克拉默法则(Cramer’s Rule)

n n n 个方程 n n n 个未知量构成的非齐次线性方程组

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \\ \end{aligned} \right. a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2an1x1+an2x2++annxn=bn

的系数行列式 ∣ A ∣ = ̸ 0 |A| =\not 0 A≠0,则方程组有唯一解,且

x i = ∣ A i ∣ ∣ A ∣ ,    i = 1 , 2 , … , n x_i = \frac{|A_i|}{|A|},~~i = 1,2,\dots,n xi=AAi,  i=1,2,,n

其中 ∣ A i ∣ |A_i| Ai ∣ A ∣ |A| A 中第 i i i 列元素(即 x i x_i xi 的系数)替换成方程组右端的常数项 b 1 , b 2 , … , b n {b_1, b_2,\dots, b_n} b1,b2,,bn 所构成的行列式

推论

若包含 n n n 个方程 n n n 个未知量的齐次线性方程组

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = 0 \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = 0 \\ \end{aligned} \right. a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0an1x1+an2x2++annxn=0

的系数行列式 ∣ A ∣ = ̸ 0 |A| =\not 0 A≠0 的充分必要条件是方程组有唯一零解,反之若齐次线性方程组有非零解,充要条件是其系数行列式 ∣ A ∣ = 0 |A| = 0 A=0

4.2 齐次线性方程组

4.2.1 齐次线性方程组的表达形式

n n n 个未知量, m m m 个方程组成的方程组

(1)一般形式

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 \left\{ \begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \\ \end{aligned} \right. a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0

(2)向量形式

α 1 x 1 + α 2 x 2 + ⋯ + α n x n = 0 \bm\alpha_1x_1 + \bm\alpha_2x_2 + \dots + \bm\alpha_nx_n= \bm0 α1x1+α2x2++αnxn=0

  • 其中

α j = [ a 1 j , a 2 j , … , a m j ] T ,     j = 1 , 2 , … , n 0 = [ 0 , 0 , … , 0 ] T \begin{aligned} \bm\alpha_j = & [a_{1j}, a_{2j}, \dots, a_{mj}]^T,~~~j = 1,2,\dots,n \\ \bm0 = & [0,0,\dots,0]^T \\ \end{aligned} αj=0=[a1j,a2j,,amj]T,   j=1,2,,n[0,0,,0]T

(3)矩阵形式

A m × n x = 0 A_{m \times n}\bm{x} = \bm{0} Am×nx=0

[ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . a m 1 a m 2 . . . a m n ] [ x 1 x 2 … x n ] = [ 0 0 … 0 ] \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ... & & ... \\ a_{m1} & a_{m2} & ... & a_{mn} \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ \end{bmatrix} a11a21...am1a12a22...am2.........a1na2n...amnx1x2xn=000

4.2.2 齐次线性方程组的解

将有序数组 c 1 , c 2 , … , c n {c_1, c_2,\dots,c_n} c1,c2,,cn 代入 n n n 未知量方程组的 x \bm{x} x 中,使得每个方程成立,则称 [ c 1 , c 2 , … , c n ] T [{c_1, c_2,\dots,c_n}]^T [c1,c2,,cn]T 为方程组的一个解(或解向量),记为 ξ = [ c 1 , c 2 , … , c n ] T \bm\xi = [{c_1, c_2,\dots,c_n}]^T ξ=[c1,c2,,cn]T

  • 齐次方程组只有零解 ⇔ \Leftrightarrow α 1 , α 2 , … , α n {\alpha_1, \alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关
4.2.3 齐次线性方程组的基础解系

ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr A x = 0 A\bm{x} = \bm{0} Ax=0 的解向量,若满足

  1. ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr 线性无关
  2. A x = 0 A\bm{x} = \bm{0} Ax=0 的任一解向量 ξ \bm\xi ξ 均可由 ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr 线性表出,则称向量组 ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr A x = 0 A\bm{x} = \bm{0} Ax=0基础解系
4.2.4 齐次线性方程组解的性质

ξ 1 , ξ 2 , … , ξ s \bm{\xi_1,\xi_2,\dots,\xi_{s}} ξ1,ξ2,,ξs 均是 A x = 0 A\bm{x} = \bm{0} Ax=0 的解,则

k 1 ξ 1 + k 2 ξ 2 + ⋯ + k s ξ s k_1\bm\xi_1 + k_2\bm\xi_2 + \dots + k_s\bm\xi_{s} k1ξ1+k2ξ2++ksξs

仍是 A x = 0 A\bm{x} = \bm{0} Ax=0 的解,其中的 k k k 可以是任意常数(当然包括 0)

4.2.5 齐次线性方程组的通解

向量组 ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr A x = 0 A\bm{x} = \bm{0} Ax=0基础解系,则

k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − r ξ n − r k_1\bm\xi_1 + k_2\bm\xi_2 + \dots + k_{n-r}\bm\xi_{n-r} k1ξ1+k2ξ2++knrξnr

A x = 0 A\bm{x} = \bm{0} Ax=0通解(或称一般解),其中 ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr 是任意常数

4.2.6 齐次线性方程组有解的条件

A x = 0 A\bm{x} = \bm{0} Ax=0 一定有解,至少有零解

齐 次 线 性 方 程 组   A x = 0   只 有 零 解 ( 有 非 零 解 ) ⇔ 系 数 行 列 式   ∣ A ∣ = ̸ 0 ( ∣ A ∣ = 0 ) ⇔   α 1 , α 2 , … , α n   线 性 无 关 ( 线 性 相 关 ) ⇔ 秩   r ( A ) = n ( r ( A ) &lt; n ) \begin{aligned} 齐&amp;次线性方程组~A\bm{x} = \bm{0}~只有零解 &amp;(有非零解)\\ \Leftrightarrow &amp; 系数行列式~|A| =\not 0 &amp;(|A| = 0)\\ \Leftrightarrow &amp; ~\bm{\alpha_1, \alpha_2,\dots,\alpha_n}~线性无关 &amp;(线性相关)\\ \Leftrightarrow &amp; 秩~r(A) = n &amp;(r(A) &lt; n)\\ \end{aligned} 线 Ax=0  A≠0 α1,α2,,αn 线 r(A)=nA=0线r(A)<n

4.2.7 基础解系向量个数与秩的关系

A A A m × n m \times n m×n 矩阵, r ( A ) = r &lt; n r(A) = r &lt; n r(A)=r<n,则齐次线性方程组 A x = 0 A\bm{x} = \bm{0} Ax=0 存在基础解系,且基础解系有 n − r n - r nr 个线性无关的向量组成,故

基 础 解 系 向 量 个 数 + r ( A ) = n ( 未 知 量 个 数 ) 基础解系向量个数 + r(A) = n(未知量个数) +r(A)=n

4.2.8 基础解系和通解的求法(*)

n n n 个未知量, m m m 个方程组成的方程组,系数矩阵为 A A A m × n m \times n m×n 矩阵)

  1. A A A 进行初等行变换得到 B B B 对应一个新的方程组(当然和原方程组的解是一样的)

B = [ c 11 c 12 . . . c 1 r c 1 , r + 1 . . . c 1 n 0 c 22 . . . c 2 r c 2 , r + 1 . . . c 2 n . . . . . . . . . . . . 0 0 . . . c r r c r , r + 1 . . . c r n 0 0 . . . 0 0 . . . 0 . . . . . . . . . . . . . . . 0 0 . . . 0 0 . . . 0 ] B = \left[ \begin{array}{cccc:cc} c_{11} &amp; c_{12} &amp; ... &amp; c_{1r} &amp; c_{1,r+1} &amp; ... &amp; c_{1n} \\ 0 &amp; c_{22} &amp; ... &amp; c_{2r} &amp; c_{2,r+1} &amp; ... &amp; c_{2n} \\ ... &amp; ... &amp; &amp; ... &amp; ...\\ 0 &amp; 0 &amp; ... &amp; c_{rr} &amp; c_{r,r+1} &amp; ... &amp; c_{rn} \\ \hdashline 0 &amp; 0 &amp; ... &amp; 0 &amp; 0 &amp; ... &amp; 0 \\ ... &amp; ... &amp; &amp; ... &amp; ... &amp; &amp; ...\\ 0 &amp; 0 &amp; ... &amp; 0 &amp; 0 &amp; ... &amp; 0 \\ \end{array} \right] B=c110...00...0c12c22...00...0...............c1rc2r...crr0...0c1,r+1c2,r+1...cr,r+10...0...............c1nc2ncrn0...0

  1. B B B 左上角对应的 r r r 个未知量 x 1 , x 2 , … , x r x_1, x_2, \dots, x_r x1,x2,,xr 称为独立未知量,而后面的 n − r n - r nr 个未知量 x r + 1 , … , x n x_{r+1}, \dots, x_n xr+1,,xn 称为自由未知量,将自由未知量 x r + 1 , … , x n x_{r+1}, \dots, x_n xr+1,,xn 分别赋下列 n − r n - r nr 组值

[ 1 , 0 , … , 0 ] T [ 0 , 1 , … , 0 ] T . . . [ 0 , 0 , … , 1 ] T \begin{aligned} [ &amp; 1,0,\dots,0]^T \\ [ &amp; 0,1,\dots,0]^T \\ &amp; ... \\ [ &amp; 0,0,\dots,1]^T \\ \end{aligned} [[[1,0,,0]T0,1,,0]T...0,0,,1]T

  1. 将赋值了的自由未知量代入方程,求出相应的独立未知量 x 1 , x 2 , … , x r x_1, x_2, \dots, x_r x1,x2,,xr,最后能得到 n − r n - r nr 个解

{ ξ 1 = [ d 11 , d 12 , … , d 1 r , 1 , 0 , … , 0 ] T ξ 2 = [ d 21 , d 22 , … , d 2 r , 0 , 1 , … , 0 ] T . . . ξ n − r = [ d n − r , 1 , d n − r , 2 , … , d n − r , r , 0 , 0 , … , 1 ] T \left\{ \begin{aligned} \bm\xi_{1} &amp; = [d_{11}, d_{12}, \dots, d_{1r}, &amp; 1, 0,\dots,0]^T \\ \bm\xi_{2} &amp; = [d_{21}, d_{22}, \dots, d_{2r}, &amp; 0, 1,\dots,0]^T \\ ... &amp; \\ \bm\xi_{n-r} &amp; = [d_{n-r,1}, d_{n-r,2}, \dots, d_{n-r,r}, &amp; 0, 0,\dots,1]^T \\ \end{aligned} \right. ξ1ξ2...ξnr=[d11,d12,,d1r,=[d21,d22,,d2r,=[dnr,1,dnr,2,,dnr,r,1,0,,0]T0,1,,0]T0,0,,1]T

可以证明 ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr 即是方程组 A x = 0 A\bm{x} = \bm{0} Ax=0 的基础解系

所以方程组的通解为 k 1 ξ 1 , k 2 ξ 2 , … , k n − r ξ n − r k_1\bm\xi_1, k_2\bm\xi_2,\dots,k_{n-r}\bm\xi_{n-r} k1ξ1,k2ξ2,,knrξnr,其中 k k k 是任意常数

4.3 非齐次线性方程组

4.3.1 非齐次线性方程组的表达形式

n n n 个未知量, m m m 个方程组成的方程组

和齐次线性方程组类似,只是等式右边的常数项由 0 0 0 变成了 b m b_m bm,表达形式同样也有三种,这里列出矩阵形式

A m × n x = b A_{m \times n}\bm{x} = \bm{b} Am×nx=b

[ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . a m 1 a m 2 . . . a m n ] [ x 1 x 2 … x n ] = [ b 1 b 2 … b m ] \begin{bmatrix} a_{11} &amp; a_{12} &amp; ... &amp; a_{1n} \\ a_{21} &amp; a_{22} &amp; ... &amp; a_{2n} \\ ... &amp; ... &amp; &amp; ... \\ a_{m1} &amp; a_{m2} &amp; ... &amp; a_{mn} \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \\ \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_m \\ \end{bmatrix} a11a21...am1a12a22...am2.........a1na2n...amnx1x2xn=b1b2bm

4.3.2 非齐次线性方程组的解

将有序数组 c 1 , c 2 , … , c n {c_1, c_2,\dots,c_n} c1,c2,,cn 代入 n n n 未知量方程组的 x \bm{x} x 中,使得每个方程成立,则称 [ c 1 , c 2 , … , c n ] T [{c_1, c_2,\dots,c_n}]^T [c1,c2,,cn]T 为方程组的一个解(或解向量),记为 η = [ c 1 , c 2 , … , c n ] T \bm\eta = [{c_1, c_2,\dots,c_n}]^T η=[c1,c2,,cn]T

  • A η = b A\bm\eta = \bm{b} Aη=b,即非齐次线性方程组的解是 b \bm{b} b 可由 A A A 的列向量线性标出的表出系数
4.3.3 非齐次线性方程组解的性质

η 1 , η 2 \bm{\eta_1,\eta_{2}} η1,η2 A x = b A\bm{x} = \bm{b} Ax=b 的两个解; ξ \bm{\xi} ξ 是对应齐次方程组 A x = 0 A\bm{x} = \bm{0} Ax=0 的解,则

A ( η 1 − η 2 ) =   0 A ( η 1 + k ξ ) =   b ( k 为 任 意 常 数 ) \begin{aligned} A(\bm{\eta_1} - \bm{\eta_2}) = &amp;~\bm{0} \\ A(\bm{\eta_1} + k\bm{\xi}) = &amp;~\bm{b} (k为任意常数)\\ \end{aligned} A(η1η2)=A(η1+kξ)= 0 bk

4.3.4 非齐次线性方程组有解的条件

A x = b A\bm{x} = \bm{b} Ax=b 有解

非 齐 次 线 性 方 程 组   A x = b   有 解 ⇔   b   可 由   A   的 列 向 量 组   α 1 , α 2 , … , α n   线 性 表 出 ⇔   秩   r ( A ) = r ( A   ∣   b ) ⇔   { α 1 , α 2 , … , α n } ≅ { α 1 , α 2 , … , α n , b } \begin{aligned} 非&amp;齐次线性方程组~A\bm{x} = \bm{b}~有解\\ \Leftrightarrow &amp; ~\bm{b}~可由~A~的列向量组~\bm{\alpha_1, \alpha_2,\dots,\alpha_n}~线性表出 \\ \Leftrightarrow &amp; ~秩~r(A) = r(A~|~\bm{b}) \\ \Leftrightarrow &amp;~\{\bm{\alpha_1, \alpha_2,\dots,\alpha_n}\} \cong \{\bm{\alpha_1, \alpha_2,\dots,\alpha_n, b}\} \\ \end{aligned} 线 Ax=b  b  A  α1,α2,,αn 线  r(A)=r(A  b) {α1,α2,,αn}{α1,α2,,αn,b}

A x = b A\bm{x} = \bm{b} Ax=b 无解

非 齐 次 线 性 方 程 组   A x = b   无 解 ⇔   b   不 能 由   A   的 列 向 量 组   α 1 , α 2 , … , α n   线 性 表 出 ⇔   秩   r ( A ) = ̸ r ( A   ∣   b )      ( r ( A ) + 1 = r ( A   ∣   b ) ) \begin{aligned} 非&amp;齐次线性方程组~A\bm{x} = \bm{b}~无解\\ \Leftrightarrow &amp; ~\bm{b}~不能由~A~的列向量组~\bm{\alpha_1, \alpha_2,\dots,\alpha_n}~线性表出 \\ \Leftrightarrow &amp; ~秩~r(A) =\not r(A~|~\bm{b})~~~~(r(A) + 1 = r(A~|~\bm{b})) \\ \end{aligned} 线 Ax=b  b  A  α1,α2,,αn 线  r(A)≠r(A  b)    (r(A)+1=r(A  b))

(a)

若   r ( α 1 , α 2 , … , α n ) = r ( α 1 , α 2 , … , α n , b ) = n ⇔   α 1 , α 2 , … , α n   线 性 无 关 ⇔   α 1 , α 2 , … , α n , b   线 性 相 关 ⇔   b   可 由   α 1 , α 2 , … , α n   线 性 表 出 , 且 表 出 法 唯 一 ⇔   A x = b   有 唯 一 解 \begin{aligned} 若&amp;~r(\bm{\alpha_1, \alpha_2,\dots,\alpha_n}) = r(\bm{\alpha_1, \alpha_2,\dots,\alpha_n, b}) = n \\ \Leftrightarrow &amp; ~\bm{\alpha_1, \alpha_2,\dots,\alpha_n} ~线性无关 \\ \Leftrightarrow &amp; ~\bm{\alpha_1, \alpha_2,\dots,\alpha_n, b} ~线性相关 \\ \Leftrightarrow &amp; ~\bm{b}~可由~\bm{\alpha_1, \alpha_2,\dots,\alpha_n}~线性表出,且表出法唯一 \\ \Leftrightarrow &amp; ~A\bm{x} = \bm{b}~有唯一解 \end{aligned}  r(α1,α2,,αn)=r(α1,α2,,αn,b)=n α1,α2,,αn 线 α1,α2,,αn,b 线 b  α1,α2,,αn 线 Ax=b 

(b)

若   r ( α 1 , α 2 , … , α n ) = r ( α 1 , α 2 , … , α n , b ) = r &lt; n ⇔   α 1 , α 2 , … , α n   线 性 相 关 ⇔   b   可 由   α 1 , α 2 , … , α n   线 性 表 出 , 但 表 出 法 不 唯 一 ⇔   A x = b   有 无 穷 多 解 \begin{aligned} 若&amp;~r(\bm{\alpha_1, \alpha_2,\dots,\alpha_n}) = r(\bm{\alpha_1, \alpha_2,\dots,\alpha_n, b}) = r &lt; n \\ \Leftrightarrow &amp; ~\bm{\alpha_1, \alpha_2,\dots,\alpha_n} ~线性相关 \\ \Leftrightarrow &amp; ~\bm{b}~可由~\bm{\alpha_1, \alpha_2,\dots,\alpha_n}~线性表出,但表出法不唯一 \\ \Leftrightarrow &amp; ~A\bm{x} = \bm{b}~有无穷多解 \end{aligned}  r(α1,α2,,αn)=r(α1,α2,,αn,b)=r<n α1,α2,,αn 线 b  α1,α2,,αn 线 Ax=b 

4.3.5 非齐次线性方程组通解结构

A m × n x = b A_{m \times n}\bm{x} = \bm{b} Am×nx=b 有特解 η \bm\eta η,对应的齐次线性方程组 A x = 0 A\bm{x} = \bm{0} Ax=0 有基础解系 ξ 1 , ξ 2 , … , ξ n − r \bm{\xi_1,\xi_2,\dots,\xi_{n-r}} ξ1,ξ2,,ξnr,则 A x = b A\bm{x} = \bm{b} Ax=b 的通解为

k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − r ξ n − r + η k_1\bm\xi_1 + k_2\bm\xi_2 + \dots + k_{n-r}\bm\xi_{n-r} + \bm\eta k1ξ1+k2ξ2++knrξnr+η

其中 k k k 是任意常数

4.3.6 非齐次线性方程组通解求法

方程组 A m × n x = b A_{m \times n}\bm{x} = \bm{b} Am×nx=b

  1. 将增广矩阵 ( A   ∣   b ) (A~|~\bm{b}) (A  b) 做初等行变换成阶梯形矩阵
  2. 求出对应齐次线性方程组的基础解系 k 1 ξ 1 , k 2 ξ 2 , … , k n − r ξ n − r   ( r ( A ) = r ) k_1\bm\xi_1, k_2\bm\xi_2, \dots, k_{n-r}\bm\xi_{n-r}~(r(A)=r) k1ξ1,k2ξ2,,knrξnr (r(A)=r)
  3. 求一个非齐次特解设为 η \bm\eta η(可取自由未知量为任意值),为计算简单,一般均取零值再代入方程,求得独立未知量,并得 η \bm\eta η,则 A x = b A\bm{x} = \bm{b} Ax=b 的通解为

k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − r ξ n − r + η k_1\bm\xi_1 + k_2\bm\xi_2 + \dots + k_{n-r}\bm\xi_{n-r} + \bm\eta k1ξ1+k2ξ2++knrξnr+η

其中 k 1 ξ 1 + k 2 ξ 2 + ⋯ + k n − r ξ n − r k_1\bm\xi_1 + k_2\bm\xi_2 + \dots + k_{n-r}\bm\xi_{n-r} k1ξ1+k2ξ2++knrξnr 是对应齐次线性方程组的通解, k k k 是任意常数

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值