一元函数积分学的计算

目录:点我

思维导图下载:点我

一元函数积分学的计算

一、基本积分公式

∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int\frac{1}{x}dx=\ln|x|+C x1dx=lnx+C
∫ a x d x = a x ln ⁡ a + C   ( a > 0 且 a ≠ 0 ) \int a^xdx=\frac{a^x}{\ln a}+C~(a>0且a\ne0) axdx=lnaax+C (a>0a=0)
∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int\tan xdx=-\ln|\cos x|+C tanxdx=lncosx+C
∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int\cot xdx=\ln|\sin x|+C cotxdx=lnsinx+C
∫ 1 cos ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int\frac{1}{\cos x}dx=\ln|\sec x+\tan x|+C cosx1dx=lnsecx+tanx+C
∫ d x sin ⁡ x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int\frac{dx}{\sin x}=\ln|\csc x-\cot x|+C sinxdx=lncscxcotx+C
∫ sec ⁡ 2 x d x = tan ⁡ x + C \int\sec^2xdx=\tan x+C sec2xdx=tanx+C
∫ csc ⁡ 2 x d x = − cot ⁡ x + C \int\csc^2xdx=-\cot x+C csc2xdx=cotx+C
∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int\sec x\tan xdx=\sec x+C secxtanxdx=secx+C
∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C \int\csc x\cot xdx=-\csc x+C cscxcotxdx=cscx+C
∫ 1 1 + x 2 d x = arctan ⁡ x + C \int\frac{1}{1+x^2}dx=\arctan x+C 1+x21dx=arctanx+C
∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C ( a > 0 ) \int\frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C(a>0) a2+x21dx=a1arctanax+C(a>0)
∫ 1 1 − x 2 d x = arcsin ⁡ x + C \int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C 1x2 1dx=arcsinx+C
∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ( a > 0 ) \int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C(a>0) a2x2 1dx=arcsinax+C(a>0)
∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C \int\frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C x2+a2 1dx=ln(x+x2+a2 )+C
∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) \int\frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C(|x|>|a|) x2a2 1dx=lnx+x2a2 +C(x>a)
∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int\frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln|\frac{x-a}{x+a}|+C x2a21dx=2a1lnx+axa+C
∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C \int\frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln|\frac{x+a}{x-a}|+C a2x21dx=2a1lnxax+a+C
∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ≥ 0 ) \int\sqrt{a^2-x^2}dx=\frac{a^2}{2}\arcsin\frac{x}{a}+\frac{x}{2}\sqrt{a^2-x^2}+C(a>|x|\ge0) a2x2 dx=2a2arcsinax+2xa2x2 +C(a>x0)
∫ sin ⁡ 2 x d x = x 2 − sin ⁡ 2 x 4 + C \int\sin^2xdx=\frac{x}{2}-\frac{\sin2x}{4}+C sin2xdx=2x4sin2x+C
∫ cos ⁡ 2 x d x = x 2 + sin ⁡ 2 x 4 + C \int\cos^2xdx=\frac{x}{2}+\frac{\sin2x}{4}+C cos2xdx=2x+4sin2x+C
∫ tan ⁡ 2 x d x = tan ⁡ x − x + C \int\tan^2xdx=\tan x-x+C tan2xdx=tanxx+C
∫ cot ⁡ 2 x d x = − cot ⁡ x − x + C \int\cot^2xdx=-\cot x-x+C cot2xdx=cotxx+C

二、不定积分的计算

1. 凑微分法

∫ f [ g ( x ) ] g ′ ( x ) d x = ∫ f [ g ( x ) ] d [ g ( x ) ] = ∫ f ( u ) d u . \int f[g(x)]g'(x)dx=\int f[g(x)]d[g(x)]=\int f(u)du. f[g(x)]g(x)dx=f[g(x)]d[g(x)]=f(u)du.

2. 换元法

∫ f ( x ) d x = x = g ( u ) ∫ f [ g ( u ) ] d [ g ( u ) ] = ∫ f [ g ( u ) ] g ′ ( u ) d u . \int f(x)dx=^{x=g(u)}\int f[g(u)]d[g(u)]=\int f[g(u)]g'(u)du. f(x)dx=x=g(u)f[g(u)]d[g(u)]=f[g(u)]g(u)du.

3. 分部积分法

∫ u d v = u v − ∫ v d u . \int udv=uv-\int vdu. udv=uvvdu.
∫ u v ( n + 1 ) d x = u v ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) − ⋯ + ( − 1 ) n u ( n ) v + ( − 1 ) n + 1 ∫ u ( n + 1 ) v d x . \int uv^{(n+1)}dx=uv^{(n)}-u'v^{(n-1)}+u''v^{(n-2)}-\cdots+(-1)^nu^{(n)}v+(-1)^{n+1}\int u^{(n+1)}vdx. uv(n+1)dx=uv(n)uv(n1)+uv(n2)+(1)nu(n)v+(1)n+1u(n+1)vdx.

4. 有理函数的积分

将形如 ∫ P n ( x ) Q m ( x ) d x ( n < m ) \int \frac{P_n(x)}{Q_m(x)}dx(n<m) Qm(x)Pn(x)dx(n<m) 的式子用因式分解的方法拆分为多项之和(差),再进行积分。

三、定积分的计算

1. 基本公式

偶 函 数 : ∫ − a a f ( x ) d x = 2 ∫ 0 a f ( x ) d x 偶函数:\int_{-a}^{a}f(x)dx=2\int_0^af(x)dx aaf(x)dx=20af(x)dx
奇 函 数 : ∫ − a a = 0 奇函数:\int_{-a}^a=0 aa=0
∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \int_0^\pi xf(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x)dx=\pi\int_0^\frac{\pi}{2}f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx
∫ 0 π 2 f ( sin ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x)dx=\int_0^\frac{\pi}{2}f(\cos x)dx 02πf(sinx)dx=02πf(cosx)dx
∫ 0 π 2 f ( sin ⁡ x , cos ⁡ x ) d x = ∫ 0 π 2 f ( cos ⁡ x , sin ⁡ x ) d x \int_0^\frac{\pi}{2}f(\sin x,\cos x)dx=\int_0^\frac{\pi}{2}f(\cos x,\sin x)dx 02πf(sinx,cosx)dx=02πf(cosx,sinx)dx
∫ a b f ( x ) d x = ∫ − π 2 π 2 f ( a + b 2 + b − a 2 sin ⁡ t ) ⋅ b − a 2 cos ⁡ t d t \int_a^bf(x)dx=\int_{-\frac{\pi}{2}}^\frac{\pi}{2}f(\frac{a+b}{2}+\frac{b-a}{2}\sin t)\cdot\frac{b-a}{2}\cos tdt abf(x)dx=2π2πf(2a+b+2basint)2bacostdt
∫ 1 x y f ( t ) d t = x ∫ 1 y f ( t ) d t + y ∫ 1 x f ( t ) d t \int_1^{xy}f(t)dt=x\int_1^yf(t)dt+y\int_1^xf(t)dt 1xyf(t)dt=x1yf(t)dt+y1xf(t)dt

2. 区间再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^bf(x)dx=\int_a^bf(a+b-x)dx abf(x)dx=abf(a+bx)dx
∫ a b f ( x ) d x = 1 2 ∫ a b [ f ( x ) + f ( a + b − x ) ] d x \int_a^bf(x)dx=\frac{1}{2}\int_a^b[f(x)+f(a+b-x)]dx abf(x)dx=21ab[f(x)+f(a+bx)]dx
∫ a b f ( x ) d x = ∫ a a + b 2 [ f ( x ) + f ( a + b − x ) ] d x \int_a^bf(x)dx=\int_a^\frac{a+b}{2}[f(x)+f(a+b-x)]dx abf(x)dx=a2a+b[f(x)+f(a+bx)]dx

3. 华里士公式

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 … 2 3 ⋅ 1 n 为 大 于 1 的 奇 数 n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \int_0^\frac{\pi}{2}\sin^nxdx=\int_0^\frac{\pi}{2}\cos^nxdx= \left\{\begin{matrix} \frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{2}{3}\cdot1 & n为大于1的奇数 \\ \frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. 02πsinnxdx=02πcosnxdx={nn1n2n3321nn1n2n3212πn1n
∫ 0 π sin ⁡ n x d x = { 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 2 3 ⋅ 1 n 为 大 于 1 的 奇 数 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \int_0^\pi\sin^nxdx= \left\{\begin{matrix} 2\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{2}{3}\cdot1 & n为大于1的奇数 \\ 2\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. 0πsinnxdx={2nn1n2n33212nn1n2n3212πn1n
∫ 0 π cos ⁡ n x d x = { 0 n 为 正 奇 数 2 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \int_0^\pi\cos^nxdx= \left\{\begin{matrix} 0 & n为正奇数 \\ 2\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. 0πcosnxdx={02nn1n2n3212πnn
{ ∫ 0 2 π sin ⁡ n x d x ∫ 0 2 π cos ⁡ n x d x = { 0 n 为 正 奇 数 4 ⋅ n − 1 n ⋅ n − 3 n − 2 … 1 2 ⋅ π 2 n 为 正 偶 数 \left\{\begin{matrix} \int_0^{2\pi}\sin^nxdx \\ \int_0^{2\pi}\cos^nxdx \end{matrix}\right.= \left\{\begin{matrix} 0 & n为正奇数 \\ 4\cdot\frac{n-1}{n}\cdot\frac{n-3}{n-2}\dots\frac{1}{2}\cdot\frac{\pi}{2} & n为正偶数 \end{matrix}\right. {02πsinnxdx02πcosnxdx={04nn1n2n3212πnn

4. 区间简化公式

∫ a b f ( x ) d x = ∫ 0 1 ( b − a ) f [ a + ( b − a ) t ] d t \int_a^bf(x)dx=\int_0^1(b-a)f\left[a+(b-a)t\right]dt abf(x)dx=01(ba)f[a+(ba)t]dt
∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x ( a > 0 ) \int_{-a}^af(x)dx=\int_0^a\left[f(x)+f(-x)\right]dx(a>0) aaf(x)dx=0a[f(x)+f(x)]dx(a>0)

5. 含三角函数的积分等式

sin ⁡ ( π ± t ) = ∓ sin ⁡ t \sin{(\pi\pm t)}=\mp\sin t sin(π±t)=sint
cos ⁡ ( π ± t ) = − cos ⁡ t \cos{(\pi\pm t)}=-\cos t cos(π±t)=cost
sin ⁡ ( π 2 ± t ) = cos ⁡ t \sin{(\frac{\pi}{2}\pm t)}=\cos t sin(2π±t)=cost
cos ⁡ ( π 2 ± t ) = ∓ sin ⁡ t \cos{(\frac{\pi}{2}\pm t)}=\mp\sin t cos(2π±t)=sint

6. 对称性问题、分段函数问题

需结合相关例题理解

四、变限积分的计算

F ( x ) = ∫ φ 1 ( x ) φ 2 ( x ) f ( t ) d t F(x)=\int_{\varphi_1(x)}^{\varphi_2(x)}f(t)dt F(x)=φ1(x)φ2(x)f(t)dt
F ′ ( x ) = f [ φ 2 ( x ) ] φ 2 ′ ( x ) − f [ φ 1 ( x ) ] φ 1 ′ ( x ) F'(x)=f[\varphi_2(x)]\varphi_2'(x)-f[\varphi_1(x)]\varphi_1'(x) F(x)=f[φ2(x)]φ2(x)f[φ1(x)]φ1(x)

五、反常积分的计算

考虑对反常积分进行换元,将其化为定积分处理,或是在求解过程中用极限的思想来解决瑕点的问题。

  • 4
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BeZer0

打赏一杯奶茶支持一下作者吧~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值