高等数学复习笔记(五)-一元函数积分的计算

本节为高等数学复习笔记的第五部分,一元函数积分的计算,主要包括: 四大积分基本法即凑微分法、换元法(第一类和第二类)、分部积分法以及有理函数积分法。

1. 凑微分法
1.1 基本导数公式(反过来用)
  • ( x a ) ′ = a x a − 1 (x^a)'=ax^{a-1} (xa)=axa1 ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
  • ( l o g a x ) ′ = 1 x l n a ( a > = , a ≠ 1 ) (log_ax)'=\frac{1}{xlna}(a>=,a\neq 1) (logax)=xlna1a>=,a=1 ( l n x ) ′ = 1 x (lnx)'=\frac1x (lnx)=x1
  • ( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx
  • ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
  • ( t a n x ) ′ = s e c 2 x = 1 c o s 2 x (tanx)'=sec^2x=\frac{1}{cos^2x} (tanx)=sec2x=cos2x1 ( c o t x ) ′ = − c s c 2 x = − 1 s i n 2 x (cotx)'=-csc^2x=-\frac{1}{sin^2x} (cotx)=csc2x=sin2x1
  • ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21 ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21
  • ( s e c x ) ′ = s e c x t a n x (secx)'=secxtanx (secx)=secxtanx ( c s c x ) ′ = − c s c x c o t x (cscx)'=-cscxcotx (cscx)=cscxcotx
  • [ l n ( x + x 2 + 1 ) ] = 1 x 2 + 1 [ln(x+\sqrt{x^2+1})]=\frac1{\sqrt{x^2+1}} [ln(x+x2+1 )]=x2+1 1 [ l n ( x + x 2 − 1 ) ] = 1 x 2 − 1 [ln(x+\sqrt{x^2-1})]=\frac1{\sqrt{x^2-1}} [ln(x+x21 )]=x21 1
1.2 两道例题(+第一类换元法)

   e g . ∫ s e c x d x eg.\int secxdx eg.secxdx = ∫ s e c x ⋅ t a n x + s e c x t a n x + s e c x d x =\int secx \cdot \frac{tanx+secx}{tanx+secx}dx =secxtanx+secxtanx+secxdx = ∫ d ( s e c x + t a n x ) t a n x + s e c x =\int \frac{d(secx+tanx)}{tanx+secx} =tanx+secxd(secx+tanx) = ∫ d l n ∣ s e c x + t a n x ∣ =\int dln|secx+tanx| =dlnsecx+tanx = l n ∣ s e c x + t a n x ∣ =ln|secx+tanx| =lnsecx+tanx.

   e g . 求 eg.求 eg. I = ∫ c o s 2 x − s i n x c o s x ( 1 + c o s x e s i n x ) I=\int\frac{cos^2x-sinx}{cosx(1+cosxe^{sinx})} I=cosx(1+cosxesinx)cos2xsinx.

   分 析 分析 若 f ( x ) = g ( x ) h ( x ) 若f(x)=g(x)h(x) f(x)=g(x)h(x) 则 ∫ f ( x ) d x = ∫ g ( x ) h ( x ) d x 则\int f(x)dx=\int g(x)h(x)dx f(x)dx=g(x)h(x)dx 若 g ′ ( x ) = a h ( x ) 即 d g ( x ) = a h ( x ) d x 若g'(x)=ah(x)即dg(x)=ah(x)dx g(x)=ah(x)dg(x)=ah(x)dx 即 ∫ g ( x ) h ( x ) d x = ∫ 1 a g ( x ) ⋅ a h ( x ) d x 即\int g(x)h(x)dx=\int \frac1ag(x)\cdot ah(x)dx g(x)h(x)dx=a1g(x)ah(x)dx = 1 a ∫ g ( x ) d g ( x ) =\frac1a\int g(x)dg(x) =a1g(x)dg(x).

   解 : d ( c o s x e s i n x ) = e s i n x ( c o s 2 x − s i n x ) d x 解:d(cosxe^{sinx})=e^{sinx}(cos^2x-sinx)dx d(cosxesinx)=esinx(cos2xsinx)dx

   则 I = ∫ e s i n x ( c o s 2 x − s i n x ) e s i n x c o s x ( 1 + c o s x e s i n x ) 则I=\int\frac{{e^{sinx}(cos^2x-sinx)}}{{e^{sinx}cosx(1+cosxe^{sinx})}} I=esinxcosx(1+cosxesinx)esinx(cos2xsinx) = ∫ d ( c o s x e s i n x ) e s i n x c o s x ( 1 + c o s x e s i n x ) =\int\frac{d(cosxe^{sinx})}{e^{sinx}cosx(1+cosxe^{sinx})} =esinxcosx(1+cosxesinx)d(cosxesinx) = ∫ d u u ( u + 1 ) ( 第 一 类 换 元 法 ) =\int\frac{du}{u(u+1)}(第一类换元法) =u(u+1)du = ∫ ( 1 u − 1 u + 1 ) d u =\int(\frac{1}{u}-\frac{1}{u+1})du =(u1u+11)du = l n ∣ u ∣ − l n ∣ u + 1 ∣ + C =ln|u|-ln|u+1|+C =lnulnu+1+C = l n ∣ u u + 1 ∣ + C =ln|\frac u{u+1}|+C =lnu+1u+C.

2 第二类换元法
2.1 换元法的思维结构

   1 ) 三 角 函 数 代 换 当 被 积 函 数 存 在 如 下 根 式 1)三角函数代换当被积函数存在如下根式 1 可 作 三 角 代 换 以 去 除 根 号 可作三角代换以去除根号

  • a 2 − x 2 → x = a s i n t , ∣ t ∣ ≤ π 2 \sqrt{a^2-x^2} \rightarrow x=asint,|t| \leq \frac{\pi}{2} a2x2 x=asintt2π
  • a 2 + x 2 → x = a t a n t , ∣ t ∣ ≤ π 2 \sqrt{a^2+x^2} \rightarrow x=atant,|t| \leq \frac{\pi}{2} a2+x2 x=atantt2π
  • x 2 − a 2 → x = a s e c t , x > 0 则 0 < t < π 2 \sqrt{x^2-a^2} \rightarrow x=asect,x>0则0<t<\frac{\pi}{2} x2a2 x=asectx>00<t<2π x < 0 则 π 2 < t < π x<0则\frac{\pi}{2}<t<\pi x<02π<t<π

   2 ) 恒 等 变 形 之 后 作 三 角 函 数 变 换 , 当 被 积 函 数 含 有 2)恒等变形之后作三角函数变换,当被积函数含有 2 a x 2 + b x + c 可 以 化 为 ϕ 2 ( x ) + k 2 , ϕ 2 ( x ) − k 2 , k 2 − ϕ 2 ( x ) \sqrt{ax^2+bx+c}可以化为\sqrt{\phi^2(x)+k^2},\sqrt{\phi^2(x)-k^2},\sqrt{k^2-\phi^2(x)} ax2+bx+c ϕ2(x)+k2 ϕ2(x)k2 k2ϕ2(x) 再 作 三 角 代 换 再作三角代换
   3 ) 根 式 代 换 , 当 被 积 函 数 含 有 根 式 n a x + b , a x + b c x + d , a e b x + c 3)根式代换,当被积函数含有根式^n\sqrt{ax+b},\sqrt{\frac{ax+b}{cx+d}},\sqrt{ae^{bx}+c} 3nax+b cx+dax+b aebx+c 一 般 令 ∗ = t , 对 于 既 含 有 n a x + b 又 含 有 m a x + b 的 一般令\sqrt{*}=t,对于既含有^n\sqrt{ax+b}又含有^m\sqrt{ax+b}的 =tnax+b max+b 被 积 函 数 被积函数 一 般 令 t = l a x + b , 其 中 l 为 m 、 n 的 最 小 公 倍 数 一般令t=^l\sqrt{ax+b},其中l为m、n的最小公倍数 t=lax+b lmn
   4 ) 倒 代 换 , 当 被 积 函 数 分 母 幂 次 比 分 子 高 两 次 ( 含 ) 以 上 , 令 t = 1 x 4)倒代换,当被积函数分母幂次比分子高两次(含)以上,令t=\frac1x 4()t=x1
   5 ) 复 杂 函 数 直 接 替 换 5)复杂函数直接替换 5

2.2 例题

   e g . 计 算 ∫ d x ( 2 x + 1 ) 3 + 4 x − 4 x 2 eg.计算\int\frac{dx}{(2x+1)\sqrt{3+4x-4x^2}} eg.(2x+1)3+4x4x2 dx.

   解 : 由 于 3 + 4 x − 4 x 2 = 4 − ( 2 x − 1 ) 2 解:由于\sqrt{3+4x-4x^2}=\sqrt{4-(2x-1)^2} 3+4x4x2 =4(2x1)2 令 2 x − 1 = 2 s i n t 令2x-1=2sint 2x1=2sint 则 d x = c o s t d t 则dx=costdt dx=costdt 则 I = ∫ d x ( 2 x + 1 ) ( 3 + 4 x − 4 x 2 ) 则I=\int\frac{dx}{(2x+1)(3+4x-4x^2)} I=(2x+1)(3+4x4x2)dx = ∫ c o s t d t ( 2 s i n t + 2 ) ⋅ 2 c o s t =\int\frac{costdt}{(2sint+2)\cdot 2cost} =(2sint+2)2costcostdt = 1 4 ∫ 1 s i n t + 1 =\frac14\int\frac{1}{sint+1} =41sint+11 = 1 4 ∫ 1 − s i n t c o s 2 t =\frac14\int\frac{1-sint}{cos^2t} =41cos2t1sint = 1 4 ∫ ( sec ⁡ 2 t − s i n t c o s 2 t ) d t =\frac14\int(\sec^2t-\frac{sint}{cos^2t})dt =41(sec2tcos2tsint)dt = 1 4 ( t a n t − 1 c o s t ) + C =\frac14(tant-\frac1{cost})+C =41(tantcost1)+C = 1 4 ( 2 x − 1 3 + 4 x − 4 x 2 − 2 3 + 4 x − 4 x 2 ) + C =\frac14(\frac{2x-1}{\sqrt{3+4x-4x^2}}-\frac2{\sqrt{3+4x-4x^2}})+C =41(3+4x4x2 2x13+4x4x2 2)+C = 2 x − 3 4 3 + 4 x − 4 x 2 + C =\frac{2x-3}{4\sqrt{3+4x-4x^2}}+C =43+4x4x2 2x3+C.

3. 分部积分法 ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu udv=uvvdu
3.1 三种类型
  • 被 积 函 数 为 P n ( x ) e k x 、 P n ( x ) s i n α x 、 P n ( x ) c o s α x 等 形 式 被积函数为P_n(x)e^{kx}、P_n(x)sin\alpha x、P_n(x)cos\alpha x等形式 Pn(x)ekxPn(x)sinαxPn(x)cosαx 一 般 取 u = P n ( x ) 一般取u=P_n(x) u=Pn(x)
  • 被 积 函 数 为 e a x s i n b x 、 e a x c o s b x 时 , 可 取 两 因 子 任 一 为 u 被积函数为e^{ax}sinbx、e^{ax}cosbx时,可取两因子任一为u eaxsinbxeaxcosbxu
  • 被 积 函 数 P n ( x ) l n x 、 P n ( x ) a r c s i n x 、 P n ( x ) a r c t a n x 时 被积函数P_n(x)lnx、P_n(x)arcsinx、P_n(x)arctanx时 Pn(x)lnxPn(x)arcsinxPn(x)arctanx 一 般 取 u 为 除 P n ( x ) 外 的 另 一 部 分 一般取u为除P_n(x)外的另一部分 uPn(x)
3.2 快捷方法 - 表格法

   ∫ u v n + 1 = u v ( n ) − u ′ v ( n − 1 ) + u ′ ′ v ( n − 2 ) − . . . \int uv^{n+1}=uv^{(n)}-u'v^{(n-1)}+u''v^{(n-2)}-... uvn+1=uv(n)uv(n1)+uv(n2)... + ( − 1 ) n u ( n ) v + ( − 1 ) n + 1 ∫ u ( n + 1 ) v d x +(-1)^nu^{(n)}v+(-1)^{n+1}\int u^{(n+1)}vdx +(1)nu(n)v+(1)n+1u(n+1)vdx 具 体 地 : 具体地:

   1 ) 对 于 第 一 种 情 况 : e g . ∫ ( x 3 + 2 x + 6 ) e 2 x d x 1)对于第一种情况:eg.\int(x^3+2x+6)e^{2x}dx 1eg.(x3+2x+6)e2xdx

   列 表 : 列表:
   x 3 + 2 x + 6 , 3 x 2 + 2 , 6 x ,        6 ,       0 x^3+2x+6,3x^2+2,6x,\ \ \ \ \ \ 6,\ \ \ \ \ 0 x3+2x+63x2+26x      6     0

      e 2 x ,       1 2 e 2 x ,       1 4 e 2 x , 1 8 e 2 x , 1 16 e 2 x e^{2x},\ \ \ \ \ \frac12e^{2x},\ \ \ \ \ \frac14e^{2x},\frac18e^{2x},\frac1{16}e^{2x} e2x     21e2x     41e2x81e2x161e2x

   则 I = ∫ ( x 3 + 2 x + 6 ) e 2 x d x 则I=\int(x^3+2x+6)e^{2x}dx I=(x3+2x+6)e2xdx= ( x 3 + 2 x + 6 ) 1 2 e 2 x (x^3+2x+6)\frac12e^{2x} (x3+2x+6)21e2x − ( 3 x 2 + 2 ) 1 4 e 2 x -(3x^2+2)\frac14e^{2x} (3x2+2)41e2x + 6 x 1 8 e 2 x +6x\frac18e^{2x} +6x81e2x − 6 ⋅ 1 16 e 2 x + ∫ 0 ⋅ 1 16 e 2 x d x -6\cdot\frac1{16}e^{2x}+\int 0 \cdot \frac1{16}e^{2x}dx 6161e2x+0161e2xdx = ( 1 2 x 3 − 3 4 x 2 + 7 4 x + 17 8 ) e 2 x + C =(\frac12x^3-\frac34x^2+\frac74x+\frac{17}8)e^{2x}+C =(21x343x2+47x+817)e2x+C

   2 ) 对 于 第 二 种 情 况 : e g . I = ∫ e 2 x s i n 3 x d x 2)对于第二种情况:eg.I=\int e^{2x}sin3xdx 2eg.I=e2xsin3xdx.

   列 表 : 列表:
   s i n 3 x , 3 c o s 3 x , − 9 s i n 3 x sin3x,3cos3x,-9sin3x sin3x3cos3x9sin3x

     e 2 x ,        1 2 e 2 x ,        1 4 e 2 x \ e^{2x},\ \ \ \ \ \ \frac12e^{2x},\ \ \ \ \ \ \frac14e^{2x}  e2x      21e2x      41e2x

   I = s i n 3 x ( 1 2 e 2 x ) − 3 c o s 3 x ( 1 4 e 2 x ) + ∫ ( − s i n 3 x ⋅ 1 4 e 2 x ) I=sin3x(\frac12e^{2x})-3cos3x(\frac14e^{2x})+\int(-sin3x\cdot \frac14e^{2x}) I=sin3x(21e2x)3cos3x(41e2x)+(sin3x41e2x) = ( 1 2 s i n 3 x − 3 4 c o s 3 x ) e 2 x ⋅ 4 13 + C =(\frac12sin3x-\frac34cos3x)e^{2x}\cdot \frac4{13}+C =(21sin3x43cos3x)e2x134+C.

   3 ) 对 于 第 三 种 情 况 : e g . I = ∫ a r c t a n x d x 3)对于第三种情况:eg.I=\int arctanxdx 3eg.I=arctanxdx

   列 表 : 列表:

   a r c t a n x , 1 x 2 + 1 arctanx,\frac1{x^2+1} arctanxx2+11

          1 ,          x \ \ \ \ \ \ 1,\ \ \ \ \ \ \ \ x       1        x

   I = x a r c t a n x − ∫ x x 2 + 1 d x = x a r c t a n x − 1 2 l n ( 1 + x 2 ) + C I=xarctanx-\int\frac{x}{x^2+1}dx=xarctanx-\frac12ln(1+x^2)+C I=xarctanxx2+1xdx=xarctanx21ln(1+x2)+C.

4. 有理函数积分法

   形 如 ∫ P n ( x ) Q m ( x ) d x ( n < m ) 形如\int\frac{P_n(x)}{Q_m(x)}dx(n<m) Qm(x)Pn(x)dxn<m 的 积 分 称 为 有 理 函 数 的 积 分 的积分称为有理函数的积分 其 中 分 子 是 x 的 n 次 多 项 式 , 分 母 是 x 的 m 次 多 项 式 其中分子是x的n次多项式,分母是x的m次多项式 xnxm.
   分 解 的 基 本 原 则 : 分解的基本原则:

  • Q m ( x ) 的 k 重 因 式 ( a x + b ) k 产 生 k 项 , 分 别 为 A 1 a x + b + A 2 ( a x + b ) 2 + . . . A k ( a x + b ) k Q_m(x)的k重因式(ax+b)^k产生k项,分别为\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+...\frac{A_k}{(ax+b)^k} Qm(x)k(ax+b)kkax+bA1+(ax+b)2A2+...(ax+b)kAk
  • Q m ( x ) 的 k 重 因 式 ( p x 2 + q x + r ) k 产 生 k 项 , 分 别 为 Q_m(x)的k重因式(px^2+qx+r)^k产生k项,分别为 Qm(x)k(px2+qx+r)kk A 1 x + B 1 ( p x 2 + q x + r ) + A 2 x + B 2 ( p x 2 + q x + r ) 2 + . . + A k x + B k ( p x 2 + q x + r ) k \frac{A_1x+B_1}{(px^2+qx+r)}+\frac{A_2x+B_2}{(px^2+qx+r)^2}+..+\frac{A_kx+B_k}{(px^2+qx+r)^k} (px2+qx+r)A1x+B1+(px2+qx+r)2A2x+B2+..+(px2+qx+r)kAkx+Bk

   e g . 求 不 定 积 分 ∫ 4 x 2 − 6 x − 1 ( x + 1 ) ( 2 x − 1 ) 2 d x eg.求不定积分\int{\frac{4x^2-6x-1}{(x+1)(2x-1)^2}}dx eg.(x+1)(2x1)24x26x1dx.

   解 : 首 先 分 解 为 简 单 分 式 之 和 : 4 x 2 − 6 x − 1 ( x + 1 ) ( 2 x − 1 ) 2 解:首先分解为简单分式之和:\frac{4x^2-6x-1}{(x+1)(2x-1)^2} (x+1)(2x1)24x26x1 = A x + 1 + B 2 x − 1 + C ( 2 x − 1 ) 2 =\frac{A}{x+1}+\frac{B}{2x-1}+\frac{C}{(2x-1)^2} =x+1A+2x1B+(2x1)2C.

   通 分 后 解 方 程 组 , 得 到 A = 1 , B = 0 , C = − 2 。 通分后解方程组,得到A=1,B=0,C=-2。 A=1B=0C=2 然 后 逐 个 积 分 ( 也 可 以 令 x 取 不 同 值 , 得 到 A B C ) 然后逐个积分(也可以令x取不同值,得到ABC) xABC.

   e g . 求 不 定 积 分 ∫ x x 3 − x 2 + x − 1 d x eg.求不定积分\int\frac{x}{x^3-x^2+x-1}dx eg.x3x2+x1xdx.

   解 : x 3 − x 2 + x − 1 = ( x − 1 ) ( x 2 + 1 ) , 有 x x 3 − x 2 + x − 1 = A x − 1 + B x + C x 2 + 1 解:x^3-x^2+x-1=(x-1)(x^2+1),有\frac{x}{x^3-x^2+x-1}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1} x3x2+x1=(x1)(x2+1)x3x2+x1x=x1A+x2+1Bx+C 则 x ≡ A ( x 2 + 1 ) + ( B x + C ) ( x − 1 ) , 则x\equiv A(x^2+1)+(Bx+C)(x-1), xA(x2+1)+(Bx+C)(x1) 得 到 A , B 的 值 , 分 别 积 分 得到A,B的值,分别积分 A,B


欢迎扫描二维码关注微信公众号 深度学习与数学   [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]
在这里插入图片描述

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值