softmax回归从0开始实现

#coding=utf-8
import torch
import torchvision
import numpy as np
import sys
sys.path.append("..") # 为了导入上层目录的d2lzh_pytorch
from d2l import torch as d2l
import matplotlib.pyplot as plt
#from IPython import display


batch_size=256
train_iter,test_iter=d2l.load_data_fashion_mnist(batch_size)

#每个输入是一张图片,输入为一维向量,将大小28*28的图片拉伸成一维向量,大小784,输出为10种分类情况
num_inputs=784
num_outputs=10

#定义权重
#w=torch.normal(0,0.01,size=(num_inputs,num_outputs),requires_grad=torch.float)
#b=torch.zeros(num_outputs,requires_grad=True)
w = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)

#通过设置requires_grad_属性为True,可以告诉PyTorch在反向传播过程中需要计算该参数的梯度
w.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)

#实现softmax的运算,经过softmax后,所有输出为非负,且和为1
def softmax(x):
    x_exp=x.exp()
    partition=x_exp.sum(dim=1,keepdim=True)
    return x_exp/partition
#return 中运用了广播机制
#广播机制的原理很简单:对于两个形状不同的张量A和B,
# 如果它们的形状在某个维度上相同,那么在该维度上的每个元素都可以被独立地视为一个标量来进行操作;
# 如果它们的形状在某个维度上不同,那么在该维度上为1的尺寸会自动扩展以匹配另一个张量的该维度,
# 而其他维度则用0来填充。这样,两个张量就可以进行逐元素操作了

#定义模型
def net(x):
    return softmax(torch.matmul(x.reshape((-1,w.shape[0])),w)+b)
#x通过reshape操作转换为一个列向量,然后与权重矩阵w进行矩阵乘法运算,得到一个新的张量。[1,784]*[784,10]=[1,10]
# 接着,将上一步的结果与偏置向量b相加,得到一个新的张量。
# 最后,对这个新的张量应用softmax函数,得到每个类别的概率分布。


#定义损失函数,使用交叉熵损失函数
"""首先通过y_hat张量计算出一个预测值向量,
其中每个元素表示对应样本属于每个类别的概率。
然后,通过torch.log函数对该预测值向量进行对数运算,得到一个新的张量。
最后,通过对该新的张量和真实标签y进行索引操作,
选取出正确类别的预测值,并取其相反数,得到二元交叉熵损失函数的值"""
def crposs_entropy(y_hat,y):
    return -torch.log(y_hat[range(len(y_hat)),y])

#检测准确率
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
        n += y.shape[0]
    return acc_sum / n

#训练模型
num_epochs, lr = 5, 0.1
# 本函数已保存在d2lzh包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, optimizer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            y_hat = net(X)
            l = loss(y_hat, y).sum()

            # 梯度清零
            if optimizer is not None:
                optimizer.zero_grad()
            elif params is not None and params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()

            l.backward()
            if optimizer is None:
                d2l.sgd(params, lr, batch_size)
            else:
                optimizer.step()  # “softmax回归的简洁实现”一节将用到


            train_l_sum += l.item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
            n += y.shape[0]
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

train_ch3(net, train_iter, test_iter, crposs_entropy, num_epochs, batch_size, [w, b], lr)

#进行预测测试
x,y=next(iter(test_iter))
true_labels=d2l.get_fashion_mnist_labels(y.numpy())
pre_labels=d2l.get_fashion_mnist_labels(net(x).argmax(dim=1).numpy())

titles=[true +"\n"+pred for true,pred in zip(true_labels,pre_labels)]


#运行代码是d2l库显示没有show_fashion_mnist函数时,可以手动添加下段代码进行运行
#也可以ctrl+单击,进入d2l库中,将下段代码添加进d2l中
'''def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()'''


X, y = next(iter(test_iter))
true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]
d2l.show_fashion_mnist(X[0:9], titles[0:9])


写代码的时候,注意show_fashion_mnist()函数的使用,可能会显示d2l库没有此函数的错误提示,上面有解决办法。下图为模型计算参数,和预测结果值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
softmax回归从零开始实现可以分为以下几个步骤: 1. 获取并读取数据:首先,我们需要获取训练数据集和测试数据集。然后,我们可以通过数据加载器将数据集转换为可供模型使用的张量格式。 2. 初始化模型参数:我们需要定义模型的参数,其中包括权重矩阵w和偏置向量b,并将它们初始化为随机值。 3. 定义模型:softmax回归的模型可以表示为线性变换和softmax操作的组合。我们可以使用矩阵乘法和加法运算来实现线性变换,并使用softmax函数将输出转换为概率分布。 4. 定义损失函数:softmax回归使用交叉熵损失函数来衡量预测结果与真实标签之间的差异。交叉熵损失函数可以通过计算预测概率分布和真实标签的对数似然来得到。 5. 定义优化算法:我们可以使用梯度下降算法来最小化损失函数。梯度下降算法的核心思想是通过计算损失函数关于模型参数的梯度来更新参数的值。 6. 训练模型:在训练过程中,我们需要将输入数据传递给模型,计算预测结果,并根据损失函数的值来更新模型参数。这个过程可以通过多次迭代来完成。 以下是一个伪代码示例: ``` # 步骤1:获取并读取数据 data_loader = DataLoader(...) train_data, test_data = data_loader.load_data(...) # 步骤2:初始化模型参数 w = torch.randn(...) b = torch.zeros(...) # 步骤3:定义模型 def model(X): return softmax(torch.matmul(X, w) + b) # 步骤4:定义损失函数 def loss(y_hat, y): return cross_entropy(y_hat, y) # 步骤5:定义优化算法 def optimize(params, lr): params -= lr * params.grad # 步骤6:训练模型 for epoch in range(num_epochs): for X, y in train_data: # 前向传播 y_hat = model(X) # 计算损失 l = loss(y_hat, y) # 反向传播 l.backward() # 更新参数 optimize([w, b], lr) # 清零梯度 w.grad.zero_() b.grad.zero_() # 相关问题:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值