动手学深度学习--课堂笔记softmax回归的从零开始实现

softmax 回归是 logistic 回归的一般形式,logistic 回归用于二分类,而 softmax 回归用于多分类,主要估算输入数据 x_{i} 归属于每一类的概率,它输出值个数等于标签中的类别数,是单层神经网络,每个输出的计算依赖于所有的输入。 

即:o_{1}=x_{1}w_{11}+x_{2}w_{21}+x_{3}w_{31}+x_{4}w_{41}+b

      o_{2}=x_{1}w_{12}+x_{2}w_{22}+x_{3}w_{32}+x_{4}w_{42}+b

      o_{3}=x_{1}w_{13}+x_{2}w_{23}+x_{3}w_{33}+x_{4}w_{43}+b

1.导入包

import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

每次随机读取256张图片,通过调用.load_data_fashion_mnist()函数(上一节)返回训练集迭代器(train_iter)、测试集迭代器(test_iter).

2.初始化模型参数

num_inputs = 784#softmax回归输入的是向量,所以需要把28*28的图片转换成向量,即:28*28=784个向量
num_outputs = 10#数据集有10个类,所以输出的维度为10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)#正态分布初始化权重矩阵W(784*10)
b = torch.zeros(num_outputs, requires_grad=True)#初始化偏移量b(向量为10)

权重将构成一个784×10的矩阵, 偏置将构成一个1×10的行向量。 与线性回归一样,我们将使用正态分布初始化我们的权重W,偏置初始化为0。

简单回顾:定义一个矩阵X,对所有元素求和

当调用sum运算符时,我们可以指定保持在原始张量的轴数,而不折叠求和的维度(keepdim=True)。

X = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
X.sum(0, keepdim=True), X.sum(1, keepdim=True)#0为按行输出,1为按列输出

矩阵:                   X.sum(0, keepdim=True):[5.0, 7.0, 9.0],即输出行向量,两行上下相加

1.02.03.0
4.05.06.0
    X.sum(1, keepdim=True):[6.0, 15.0],即输出列向量,每一行相加

 3.定义softmax操作(X为一个矩阵,对矩阵的每一行进行softmax)

def softmax(X):
    X_exp = torch.exp(X)#进行指数运算
    partition = X_exp.sum(1, keepdim=True)#按列求和
    return X_exp / partition  # 这里应用了广播机制。第i行/第i个元素

进行验证:(对于任何随机输入,我们将每个元素变成一个非负数。 此外,依据概率原理,每行总和为1)

X = torch.normal(0, 1, (2, 5))#将X定义为一个均值为0,方差为1的2*5的矩阵
X_prob = softmax(X)#放入softmax模型中进行计算
X_prob, X_prob.sum(1)

4.定义softmax回归模型

def net(X):
    return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)#reshape函数将每张原始图像展平为向量

reshape(-1):会根据所给的新的shape的信息,自动计算补足shape缺失的值

shape[0]:表示矩阵的行数;shape[1]:表示矩阵的列数

X.reshape((-1, W.shape[0])):X矩阵为256*784。-1代表批量的大小;W.shape[0]代表W矩阵的行数

numpy.matmul():返回两个数组的矩阵乘积

5.定义损失函数

根据标号将对应的预测值取出,y作为y_hat的索引

y = torch.tensor([0, 2])
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y_hat[[0, 1], y]

 y_hat:2个样本在3个类别中的预测值,

第一个样本的3种预测概率                        第二个样本的3种预测值概率

0.10.30.6
0.30.20.5
y_hat[[0,1], y]:[[0,1], [0, 2]]--->(0,0)(1,2),                  即(0,0)表示第一个样本的第一类 (0.1) ;                                                                                           (1,2)表示第二个样本的第三类 (0.5)   

实现交叉熵损失函数

def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)

 交叉熵 = -log(预测的类别的概率)

len(y_hat):输出y_hat的行数

range(len(y_hat)):得到每一个样本

y_hat[range(len(y_hat)), y]:得到的是每一个样本的真实类别对应的一个概率

cross_entropy():交叉熵损失函数-\sum_{i=1}^{n}y\cdot log_{2}\hat{y}

 6.分类精度

将预测类别与真实y元素进行比较

def accuracy(y_hat, y):  #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:#y_hat是二维矩阵并且列数大于1
        y_hat = y_hat.argmax(axis=1)#每一行中最大的下标存到y_hat中
    cmp = y_hat.type(y.dtype) == y#将y_hat转变成与y相同的数据类型并进行比较。形成bool类型(0错,1对)
    return float(cmp.type(y.dtype).sum())# 计算总的相同数

type() 返回数据结构类型(list、dict、numpy.ndarray 等)

dtype() 返回数据元素的数据类型(int、float等)

accuracy(y_hat, y) / len(y)

最后输出的结果为0.5:

通过y_hat = y_hat.argmax(axis=1)得到y_hat为(2, 2),而y为(0, 2),可以看出只有第二个样本的预测值与实际标签是一样的。所以两个样本的分类精度率为1/2=0.5.

对于任意数据迭代器data_iter可访问的数据集,可评估在任意模型net的准确率

def evaluate_accuracy(net, data_iter):  #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()#将模型设置为评估模式:得出的结果只用来评估模型的准确率,不做反向传播
    metric = Accumulator(2)#Accumulator用于对多个变量进行累加 这里是在Accumulator实例中创建了2个变量,分别用于存储正确预测的数量(0)和预测的总数量(1)
    with torch.no_grad():
        for X, y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]#分类正确的样本数/总样本数

torch.nn.Module:torch.nn是为神经网络设计的模块化接口。nn.Module是nn中的类,该类是所有神经网络模块的基类。

eval() :用来执行一个字符串表达式,并返回表达式的值

Accumulator():累加器

torch.no_grad():一般用于神经网络的推理阶段, 表示张量的计算过程中无需计算梯度

numel()函数:返回数组中元素的个数

accuracy(net(X), y):net(X)将X放入net模型中进行softmax回归计算;

                                  accuracy(net(X), y)计算所有预测正确的样本数

Accumulate累加器的实现:

在Accumulate实例中创建了2个变量, 分别用于存储正确预测的数量和预测的总数量

class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):# 构造函数的初始长度为n,初始值为0
        self.data = [0.0] * n

    def add(self, *args): # 将训练损失、训练精度、训练样本数进行累加
        self.data = [a + float(b) for a, b in zip(self.data, args)]# zip()就是把两个参数打包成一个数据结构,a就是原来的值,b就是我们输入的值。

    def reset(self):
        self.data = [0.0] * len(self.data)

    def __getitem__(self, idx): # 取出训练损失、训练精度或训练样本数
        return self.data[idx]

evaluate_accuracy(net, test_iter)

7.训练

def train_epoch_ch3(net, train_iter, loss, updater):  #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)#创建长度为3的累加器
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用PyTorch内置的优化器和损失函数
            updater.zero_grad()#梯度设置为0
            l.mean().backward()#计算梯度
            updater.step()#更新
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]#metric[0]是损失样本数目;metric[1]是训练正确的样本数;metric[2]是总的样本数

isinstance() :来判断一个对象是否是一个已知的类型,类似 type()

torch.optim.Optimizer:pytorch中用来优化模型权重的类

定义在一个动画中绘制数据的实用程序类

class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)

实现一个训练函数

def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater):  #@save
    """训练模型(定义见第3章)"""
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                        legend=['train loss', 'train acc', 'test acc'])
    for epoch in range(num_epochs):#num_epochs训练次数
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)#train_epoch_ch3训练模型,返回精确率和错误率
        test_acc = evaluate_accuracy(net, test_iter)#在测试集上评估精度
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <= 1 and test_acc > 0.7, test_acc

定义的小批量随机梯度下降来优化模型的损失函数,设置学习率为0.1。

lr = 0.1

def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)

开始训练

迭代周期(num_epochs)和学习率(lr)都是可调节的超参数。通过更改它们的值,我们可以提高模型的分类准确率。

num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)

进行预测

def predict_ch3(net, test_iter, n=6):  #@save
    """预测标签(定义见第3章)"""
    for X, y in test_iter:
        break
    trues = d2l.get_fashion_mnist_labels(y)
    preds = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1))
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]
    d2l.show_images(
        X[0:n].reshape((n, 28, 28)), 1, n, titles=titles[0:n])

predict_ch3(net, test_iter)

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
softmax回归从零开始的实现可以分为以下几个步骤: 1. 获取并读取数据:首先,我们需要获取训练数据集和测试数据集。然后,我们可以通过数据加载器将数据集转换为可供模型使用的张量格式。 2. 初始化模型参数:我们需要定义模型的参数,其中包括权重矩阵w和偏置向量b,并将它们初始化为随机值。 3. 定义模型:softmax回归的模型可以表示为线性变换和softmax操作的组合。我们可以使用矩阵乘法和加法运算来实现线性变换,并使用softmax函数将输出转换为概率分布。 4. 定义损失函数:softmax回归使用交叉熵损失函数来衡量预测结果与真实标签之间的差异。交叉熵损失函数可以通过计算预测概率分布和真实标签的对数似然来得到。 5. 定义优化算法:我们可以使用梯度下降算法来最小化损失函数。梯度下降算法的核心思想是通过计算损失函数关于模型参数的梯度来更新参数的值。 6. 训练模型:在训练过程中,我们需要将输入数据传递给模型,计算预测结果,并根据损失函数的值来更新模型参数。这个过程可以通过多次迭代来完成。 以下是一个伪代码示例: ``` # 步骤1:获取并读取数据 data_loader = DataLoader(...) train_data, test_data = data_loader.load_data(...) # 步骤2:初始化模型参数 w = torch.randn(...) b = torch.zeros(...) # 步骤3:定义模型 def model(X): return softmax(torch.matmul(X, w) + b) # 步骤4:定义损失函数 def loss(y_hat, y): return cross_entropy(y_hat, y) # 步骤5:定义优化算法 def optimize(params, lr): params -= lr * params.grad # 步骤6:训练模型 for epoch in range(num_epochs): for X, y in train_data: # 前向传播 y_hat = model(X) # 计算损失 l = loss(y_hat, y) # 反向传播 l.backward() # 更新参数 optimize([w, b], lr) # 清零梯度 w.grad.zero_() b.grad.zero_() # 相关问题:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值