题解:首先确定可不可以到达最后一个位置:
1、如果不可以直接返回结果-1;
2、如果可以用dp求到达最后一个位置的最大积分:dp[i]表示到达位置i的最大积分;
//id表示可以到达的最大位置坐标,i表示当前位置
if(id>=i)
{
dp[i]=dp[i]+num[i];
if(num[i]+i>id)
id=num[i]+i;
}
for(int j=1;j<=num[i];j++)
{
dp[i+j]=max(dp[i],dp[i+j]);//表示dp[i+j]表示i+j到达位置的最大积分
}
详情请看代码
描述
给定一个非负整数数组nums,假定最开始处于下标为0的位置,数组里面的每个元素代表下一跳能够跳跃的最大长度,如果可以跳到数组最后一个位置,请你求出跳跃路径中所能获得的最多的积分。
1.如果能够跳到数组最后一个位置,才能计算所获得的积分,否则积分值为-1
2.如果无法跳跃(即数组长度为0),也请返回-1
3.数据保证返回的结果不会超过整形范围,即不会超过
输入描述:
第一行输入一个正整数 n 表示数组 nums的长度
第二行输入 n 个整数,表示数组 nums 的所有元素的值
输出描述:
输出能获得的最多的积分
示例1
输入:
6 2 4 2 1 0 100
复制输出:
106
复制说明:
首先位于nums[0]=2,然后可以跳1步,到nums[1]=4的位置,积分=2+4=6,再跳到nums[5]=100的位置,积分=6+100=106 这样保证既能跳到数组最后一个元素,又能保证获取的积分最多
示例2
输入:
6 2 4 0 2 0 100
复制输出:
108
复制说明:
跳跃路径为:2=>4=>2=>100,总共为108
示例3
输入:
6 2 3 2 1 0 100
复制输出:
-1
复制说明:
跳不到最后一个位置,返回-1
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int num[100005];
int dp[101005];
int main()
{
int n;
scanf("%d",&n);
memset(dp,-1,sizeof(dp));
if(n==0)
{
printf("-1\n");
return 0;
}
for(int i=1;i<=n;i++)
{
scanf("%d",&num[i]);
}
int step=0;
//dp[i]走到第i位置获得的最大积分
dp[1]=num[1];
step=num[1]+1;
int t=0;
for(int i=2;i<=n;i++)
{
if(step>=i)
{
if(i+num[i]>=step || i+num[i]>=n)
{
step=i+num[i];
}
}
else{
t=1;
break;
}
}
//不能到达最后一个位置
if(t || step<n)
{
printf("-1\n");
return 0;
}
else{//可以到达最后一个位置,用dp求最大积分
int id=0;
for(int i=1;i<=n;i++)
{
if(i==1)
{
dp[i]=num[i];
id=num[i]+1;
}
else{
if(id>=i)
{
dp[i]=dp[i]+num[i];
int m=i+num[i];
if(m>id)
{
id=m;
}
}
}
for(int j=1;j<=num[i];j++)
{
dp[i+j]=max(dp[i],dp[i+j]);
}
}
printf("%d\n",dp[n]);
}
return 0;
}