SLAM机器人
文章平均质量分 73
IT兔
啦啦啦
展开
-
SLAM机器人开发(五)使用Improved_ORBSLAM2实时稠密重建教程
SLAM机器人开发(五)使用Improved_ORBSLAM2进行实时稠密重建在这篇中,我们将使用Improved_ORBSLAM2实时稠密重建。为了完成这一目标,我们需要搭建ROS环境、安装依赖库以及运行ORBSLAM2 App等。原创 2022-04-17 15:39:53 · 1908 阅读 · 0 评论 -
ROS系列书籍--机械工业出版社
以下是学习ROS机器人开发的系列书籍:如果想全面的了解ROS机器人,推荐1、《ROS机器人开发实践》(作者:胡春旭)如果想深入学习各类ROS机器人控制,推荐《ROS机器人开发:实用案例分析》(作者:卡罗尔·费尔柴尔德)如果想深入学习ROS机器人在移动机械臂、智能驾驶、VR、多机器人协同方面的应用,推荐6、《ROS机器人项目开发11例》(作者:拉姆库玛·甘地那坦 郎坦·约瑟夫)。原创 2022-04-13 21:02:08 · 5388 阅读 · 0 评论 -
SLAM机器人开发(四)Improved_ORBSLAM2算法
SLAM机器人开发(四)Improved_ORBSLAM2算法ORBSLAM算法简介ORBSLAM算法简介原创 2021-12-25 20:41:26 · 2212 阅读 · 0 评论 -
SLAM机器人开发(三)SLAM中常见的里程计
自主导航技术可以使运动载体实时确定自身的位姿和速度,从而引导自身运动的技术,整个导航过程不依赖外部支持。比如,在 GPS 不可靠的情况下,自主导航技术也能够具有可靠的导 航能力。由此可见,自主导航系统的开发是构建运动机器人的主要挑战之一。机器人领域中,自主导航技术主要包括建图定位与路径规划。而近几年成为关注焦点的 SLAM 技术是自主导航技术 中很重要的一项技术。SLAM 技术包括传感器信息读取、里程测量、后端优化、回环检测、实时 建图等部分[2]。自主导航技术中需要实时确定自身的位姿,因此计算里程计是举足原创 2021-11-28 17:59:58 · 10511 阅读 · 6 评论 -
SLAM机器人开发(二)SLAM技术现状
SLAM机器人开发(二)SLAM技术现状激光SLAM2D激光SLAM3D激光SLAM视觉SLAM常见的视觉SLAM视觉SLAM对比视觉SLAM中使用的相机种类视觉SLAM效果图视觉激光融合 SLAM激光SLAM2D激光SLAM激光 SLAM 在 SLAM 技术中是较为传统且成熟的。2D 激光 SLAM 技术需要输入 IMU 数据、 里程计数据和 2D 激光雷达数据,经过计算后输出覆盖栅格地图和机器人轨迹。从 20 世纪 90 年 代 EKF-SLAM 的提出开始,陆续出现了 UKF-SLAM、PF-S原创 2021-11-20 18:19:01 · 3690 阅读 · 2 评论 -
SLAM机器人开发(一)系统框图
SLAM机器人开发(一)系统框图自主导航与控制模块(上位机)自主导航与控制模块(下位机)自主导航与控制模块(上位机)SLAM机器人自主导航与控制模块是基于 Ubuntu 16.04 和 ROS Kinetic 系统而设计的。 Nav_Control 模块主要由十个节点构成,其中 RealSense node 和 STM32 node 作为 Linux 驱动分别 与 RealSense D415 和 STM32 单片机进行通讯。VO node,即视觉综合里程计模块,是整个 Nav_Control 模块原创 2021-11-13 16:56:00 · 2590 阅读 · 3 评论 -
SpaceInformation(std::shared_ptr<ompl::base::StateSpace> const&)’未定义的引用,怎么解决?
编译3D-RRT算法时,手动链接ompl的库文件,但是仍报错,把未定义函数注释掉其余可以正常运行。CMakeFiles/3d_rrt.dir/src/3d_rrt.cc.o:在函数‘planner::planner()’中:3d_rrt.cc:(.text._ZN7plannerC2Ev[_ZN7plannerC5Ev]+0x497):对‘ompl::base::SpaceInformation::SpaceInformation(std::shared_ptr<ompl::base::State原创 2021-03-21 23:37:59 · 526 阅读 · 1 评论 -
ORBSLAM 使用深度相机稠密重建后地图上下颠倒的解决办法
更改pointcloudmapping.cc文件中的变换参数:pcl::PointCloud< PointCloudMapping::PointT >::Ptr PointCloudMapping::generatePointCloud(KeyFrame* kf, cv::Mat& color, cv::Mat& depth){ PointCloud::Ptr tmp( new PointCloud() ); // point cloud is null原创 2021-02-26 18:55:52 · 851 阅读 · 4 评论 -
ROS系统开发中使用Qt Creator 作为IDE
ROS系统开发系中使用Qt Creator 作为IDE 管理catkin_make项目1、安装并打开Qt Creator2、导入已有的catkin_make项目管理catkin_make项目使用Qt Creator 管理catkin_make项目,可以更加系统地开发代码包。1、安装并打开Qt Creator本文中使用的是Qt Creator 3.5.1,基于Qt 5.5.1和 GCC 5.2.1。注意,要在终端中打开Qt Creator,不然会报错如下://直接双击打开Qt Creatorfi原创 2021-11-13 16:00:27 · 1438 阅读 · 2 评论