【CV】吴恩达机器学习课程笔记 | 第9章

本系列文章如果没有特殊说明,正文内容均解释的是文字上方的图片
机器学习 | Coursera
吴恩达机器学习系列课程_bilibili

9 神经网络:Learning

9-1 应用于神经网络的代价函数

  • L L L表示神经网络的总层数(Layers)
  • s l s_l sl表示第 l l l层单元(神经元)的数量(不包括偏置单元)
  • h Θ ( x ) ∈ R K h_\Theta(x)\in\mathbb{R}^K hΘ(x)RK h Θ ( x ) h_\Theta(x) hΘ(x) K K K维向量,即神经网络输出层共有 K K K个神经元,即有 K K K个输出)
  • ( h Θ ( x ) ) i = i t h o u t p u t (h_\Theta(x))_i=i^{th} output (hΘ(x))i=ithoutput ( h Θ ( x ) ) i (h_\Theta(x))_i (hΘ(x))i表示第 i i i个输出)

应用于神经网络的代价函数为:

J ( Θ ) = − 1 m [ ∑ i = 1 m ∑ k = 1 K y ( i ) l o g ( h Θ ( x ( i ) ) ) k + ( 1 − y k ( i ) ) l o g ( 1 − ( h Θ ( x ( i ) ) ) k ) ] + λ 2 m ∑ l = 1 L − 1 ∑ i = 1 s l ∑ j = 1 s l + 1 ( Θ j i ( l ) ) 2 J(\Theta)=-\frac{1}{m}\left[\sum_{i=1}^m\sum_{k=1}^Ky^{(i)}log(h_\Theta(x^{(i)}))_k+(1-y_k^{(i)})log(1-(h_\Theta(x^{(i)}))_k)\right] +\frac{λ}{2m}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}}(\Theta_{ji}^{(l)})^2 J(Θ)=m1[i=1mk=1Ky(i)log(hΘ(x(i)))k+(1yk(i))log(1(hΘ(x(i)))k)]+2mλl=1L1i=1slj=1sl+1(Θji(l))2

  • 第二项中的 ∑ i = 1 s l ∑ j = 1 s l + 1 \sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}} i=1slj=1sl+1指的是将 s l + 1 s_{l+1} sl+1 s l s_l sl列的矩阵 Θ j i ( l ) \Theta_{ji}^{(l)} Θji(l)中的每一个元素相加起来
  • 第二项中的 ∑ l = 1 L − 1 \sum_{l=1}^{L-1} l=1L1指的是将输入层和隐藏层的矩阵都求和

9-2 反向传播算法

  • δ j ( l ) \delta_j^{(l)} δj(l)定义为第 l l l层第 j j j个神经元的偏差(“error”)
    在这里插入图片描述
    以上图的四层的神经网络为例
  • δ j ( 4 ) = a j ( 4 ) − y j \delta_j^{(4)}=a_j^{(4)}-y_j δj(4)=aj(4)yj y j y_j yj指第 j j j个输出在数据集中的值, a j ( 4 ) a_j^{(4)} aj(4)指神经网络的第 j j j个输出, a j ( 4 ) a_j^{(4)} aj(4)也可表示为 ( h Θ ( x ) ) j (h_\Theta(x))_j (hΘ(x))j
  • 用向量方法表示上式可表示为 δ ( 4 ) = a ( 4 ) − y \delta^{(4)}=a^{(4)}-y δ(4)=a(4)y,也可表示为 δ ( 4 ) = h Θ ( x ) − y \delta^{(4)}=h_\Theta(x)-y δ(4)=hΘ(x)y
  • δ ( 3 ) = ( Θ ( 3 ) ) T δ ( 4 ) ⋅ g ′ ( z ( 3 ) ) \delta^{(3)}=(\Theta^{(3)})^T\delta^{(4)}\cdot g^{\prime}(z^{(3)}) δ(3)=(Θ(3))Tδ(4)g(z(3))
    其中 g ′ ( z ( 3 ) ) = a ( 3 ) ⋅ ( 1 − a ( 3 ) ) g^{\prime}(z^{(3)})=a^{(3)}\cdot (1-a^{(3)}) g(z(3))=a(3)(1a(3))
  • δ ( 2 ) = ( Θ ( 2 ) ) T δ ( 3 ) ⋅ g ′ ( z ( 2 ) ) \delta^{(2)}=(\Theta^{(2)})^T\delta^{(3)}\cdot g^{\prime}(z^{(2)}) δ(2)=(Θ(2))Tδ(3)g(z(2))
    其中 g ′ ( z ( 2 ) ) = a ( 2 ) ⋅ ( 1 − a ( 2 ) ) g^{\prime}(z^{(2)})=a^{(2)}\cdot (1-a^{(2)}) g(z(2))=a(2)(1a(2))

点乘结果是一个数,叉乘结果是一个向量

  • ∂ ∂ Θ i j ( l ) J ( Θ ) = a j ( l ) δ i ( l + 1 ) \frac{\partial}{\partial \Theta_{ij}^{(l)}}J(\Theta)=a_j^{(l)}\delta_i^{(l+1)} Θij(l)J(Θ)=aj(l)δi(l+1)
    这里忽略了正则化项,即认为 λ = 0 \lambda=0 λ=0
    在这里插入图片描述
  • 上图是反向传播算法的流程,最后可以得到 ∂ ∂ Θ i j ( l ) J ( Θ ) = D i j ( l ) \frac{\partial}{\partial \Theta_{ij}^{(l)}}J(\Theta)=D^{(l)}_{ij} Θij(l)J(Θ)=Dij(l),然后进行梯度下降算法

9-3 理解反向传播

在这里插入图片描述
以上图的神经网络为例

  • δ 2 ( 2 ) = Θ 12 ( 2 ) δ 1 ( 3 ) + Θ 22 ( 2 ) δ 2 ( 3 ) \delta_2^{(2)}=\Theta_{12}^{(2)}\delta_1^{(3)}+\Theta_{22}^{(2)}\delta_2^{(3)} δ2(2)=Θ12(2)δ1(3)+Θ22(2)δ2(3)
  • δ 2 ( 3 ) = Θ 12 ( 3 ) δ 1 ( 4 ) \delta_2^{(3)}=\Theta_{12}^{(3)}\delta_1^{(4)} δ2(3)=Θ12(3)δ1(4)

在这里插入图片描述

9-4 展开参数

9-5 梯度检测

要估计代价函数 J ( Θ ) J(\Theta) J(Θ)上点 ( θ , J ( Θ ) ) (\theta,J(\Theta)) (θ,J(Θ))处的导数值,可以运用 d d θ J ( θ ) ≈ J ( θ + ε ) − J ( θ − ε ) 2 ε ( ε = 1 0 − 4 为 宜 ) \frac{\mathrm{d} }{\mathrm{d} \theta}J(\theta)\approx\frac{J(\theta+\varepsilon)-J(\theta-\varepsilon)}{2\varepsilon}(\varepsilon=10^{-4}为宜) dθdJ(θ)2εJ(θ+ε)J(θε)(ε=104)求得导数
在这里插入图片描述
扩展到向量中,如上图

  • θ \theta θ是一个 n n n维向量,是矩阵 Θ ( 1 ) , Θ ( 2 ) , Θ ( 3 ) , . . . \Theta^{(1)},\Theta^{(2)},\Theta^{(3)},... Θ(1),Θ(2),Θ(3),...的展开
  • 可以估计 ∂ ∂ θ n J ( θ ) \frac{\partial}{\partial \theta_{n}}J(\theta) θnJ(θ)的值

将估计得到的偏导数值与反向传播得到的偏导数值比较,如果两个值非常近,就可以验证计算是正确的
一旦确定反向传播算法计算出的值是正确的,就应该关掉梯度检验算法

9-6 随机初始化

如果在程序开始时令 Θ \Theta Θ中所有元素均为0,会导致多个神经元计算相同的特征,导致冗余,这成为对称权重问题
所以在初始化时要令 Θ i j ( l ) \Theta^{(l)}_{ij} Θij(l)等于 [ − ϵ , ϵ ] [-\epsilon,\epsilon] [ϵ,ϵ]中的一个随机值

9-7 回顾总结

在这里插入图片描述
训练一个神经网络:
1.随机一个初始权重
2.执行前向传播算法,得到对所有 x ( i ) x^{(i)} x(i) h Θ ( x ( i ) ) h_\Theta(x^{(i)}) hΘ(x(i))
3.计算代价函数 J ( Θ ) J(\Theta) J(Θ)
4.执行反向传播算法,计算 ∂ ∂ Θ j k ( l ) J ( Θ ) \frac{\partial}{\partial\Theta_{jk}^{(l)}}J(\Theta) Θjk(l)J(Θ)
(get a ( l ) a^{(l)} a(l) and δ ( l ) \delta^{(l)} δ(l) for l = 2 , . . . , L l=2,...,L l=2,...,L)
5.通过梯度检验算法得到估计的 J ( Θ ) J(\Theta) J(Θ)的偏导数值,将估计得到的偏导数值与反向传播得到的偏导数值比较,如果两个值非常近,就可以验证反向传播算法的计算结果是正确的;验证完后,关闭梯段检验算法(disable gradient checking code)
6.运用梯度下降算法或其他更高级的优化方法,结合反向传播计算结果,得到使 J ( Θ ) J(\Theta) J(Θ)最小时的参数 Θ \Theta Θ的值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fannnnf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值