Codeforces Round #554 (Div. 2) C. Neko does Maths(gcd好题)

本文探讨了如何找到最小的k值,使得a+k和b+k的最小公倍数达到最小。通过枚举b-a的因子,寻找最优解,利用__gcd函数进行计算。适用于数学算法竞赛和计算机科学领域的最小公倍数问题。

题目链接
在这里插入图片描述
题意:给出a和b,求最小的k使得a+k和b+k的最小公倍数最小。
思路:一开始想化简式子,结果方向就走错了。。。这里有个gcd的性质gcd(a,b-a),所以gcd(a+k,b+k)=gcd(a+k,b-a)最终的答案就是(a+k)*(b-a)/gcd(a+k,b-a),怎么样才能使它最小呢,如果分子分母能够化简肯定是可以减小的,所以a+k和b-a一定要存在因子可以消,因为b-a是固定的所以我们只要枚举b-a的因子,最小值一定在这里面,暴力比较就可以了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; 
vector<ll>v;
int main()
{
	ll a,b;
	scanf("%lld%lld",&a,&b);
	if(a>b) swap(a,b);
	for(ll i=1;i*i<=b-a;++i)
	{
		if((b-a)%i==0) v.push_back((b-a)/i),v.push_back(i);
	}
	ll ans=1e18,k;
	for(int i=0;i<v.size();++i)
	{
		ll t=0;
		if(a%v[i]!=0) t=v[i]-a%v[i];
		ll temp=(a+t)*(b+t)/__gcd(a+t,b+t);
		if(ans>temp) ans=temp,k=t;
	}
	if(a==b) k=0;
	printf("%lld\n",k);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值