人工智能面试题

1、深度学习框架TensorFlow中都有哪些优化方法? 
答:GradientDescentOptimizer 
AdagradOptimizer 
Optimizer 
优化最小代价函数 
2、深度学习框架TensorFlow中常见的激活函数都有哪些? 
答:relu,sigmoid,tanh 
3、深度学习框架TensorFlow中有哪四种常用交叉熵? 
答: tf.nn.weighted_cross_entropy_with_logits 
tf.nn.sigmoid_cross_entropy_with_logits 
tf.nn.softmax_cross_entropy_with_logits 
tf.nn.sparse_softmax_cross_entropy_with_logits 
4、什么叫过拟合,避免过拟合都有哪些措施? 
答:过拟合:就是在机器学习中,我么测试模型的时候,提高了在训练数据集的表现力时候, 
但是在训练集上的表现力反而下降了。 
解决方案: 
1.正则化 
2.在训练模型过程中,调节参数。学习率不要太大. 
3.对数据进行交叉验证 
4.选择适合训练集合测试集数据的百分比,选取合适的停止训练标准,使对机器的训练在合适 
5.在神经网络模型中,我们可以减小权重

6、什么是核函数?

核函数是将线性不可分的特征隐射到高位特征空间,从而让支持向量机在这个高维空间线性可分,也就是使用核函数可以向高维空间映射并解决非线性的分类问题。包括线性核函数,多项式核函数,高斯核函数等,其中高斯核函数最为常用。

7、深度学习框架TensorFlow中常见的核函数都有哪些?

SVM高斯核函数,应为如果想要分割非线性数据集,改变线性分类器隐射到数据集,就要改变SVM损失函数中的核函数

线性核函数

多项式核函数

8、朴素贝叶斯方法的优势是什么?

  1. 朴素贝叶斯有稳定的分类效率
  2. 对于小规模的数据表现很好,能处理多分类问题,可以再数据超出内存时,去增量训练
  3. 对缺失数据不太敏感,算法比较简单,常用于文本分类。

9、什么是监督学习的标准方法?

所有的回归算法和分类算法都属于监督学习

并且明确的给给出初始值

在训练集中有特征和标签,并且通过训练获得一个模型,在面对只有特征而没有标签的数据时,能进行预测。

10、在机器学习中,模型的选择是指什么

根据一组不同复杂度的模型表现,从某个模型中挑选最好的模型选择一个最好模型后,在新的数据上来评价其预测误差等评价指标

11、图形数据库Neo4J的优劣势?

优势:1.更快的数据库操作,前提是数据量足够大。

2. 数据更加直观,相应的SQL语句更加好写。

3.更灵活,不管有什么新的数据需要储存,都是一律的节点,只需要考虑节点属性和边属性。

4.数据库的操作不会随着数据库的增大有明显的降低。

劣势:1.极慢的插入速度。

2.超大的节点。当一个节点的边非常多,

有关这个节点的操作速度就会大大下降

12、LR和SVM的联系与区别是什么?

  1. 都是分类算法
  2. 如果不考虑核函数,LR和SVM都是线性分类算法,也就是说他们的分类决策面都是线性的。
  3. LR和SVM都是监督学习算法
  4. LR和SVM的损失函数不同
  5. SVM只考虑局部的边界线附近的点 ,LR考虑全局,远离的点对边界线的确定也起作用。

13、什么是聚类,聚类的应用场景?

     聚类是指根据一定的准则,把一份事物按照这个准则归纳成互不重合的几份,机器学习中,聚类指按照一个标准,这个标准通常是相似性,把样本分成几份,是得相似程度高的聚在一起,相似程度低的互相分开。

聚类的应用场景,求职信息完善(有大约10万份优质简历,其中部分简历包含完整的字段,部分简历在学历,公司规模,薪水,等字段有些置空顶。希望对数据进行学习,编码与测试,挖掘出职位路径的走向与规律,形成算法模型,在对数据中置空的信息进行预测。)

14、机器学习中,为何要经常对数据做归一化?

  1. 归一化后加快的梯度下降对最优解的速度。
  2. 归一化有可能提高精度。

 

 

发布了3 篇原创文章 · 获赞 6 · 访问量 4928
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览