0基础深度学习项目8:基于Pytorch实现YOLOv5-C3模块

一、创建环境

🏡 我的环境:
● 语言环境:Python3.8
● 编译平台:colab
● 数据集:天气识别数据集
● 深度学习环境:Pytorch
○ torch == 1.12.1+cu113
○ torchvision == 0.13.1+cu113

二、前期准备

2.1 设置GPU

# 设置GPU
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:
在这里插入图片描述

2.2 导入数据

# 导入数据
data_dir = '/content/drive/MyDrive/weather_photos'  # 这个地址可以挂载云盘之后直接右键复制地址
# 将字符串类型的文件夹路径转换为pathlib.Path对象
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*')) # 以列表的形式将该路径下所有的子文件的文件路径存储在data_paths 中
classeNames = [str(path).split("/")[-1] for path in data_paths] # 通过split切割文件所属的类别名称
print(classeNames) # 输出类别名称,分别为云、雨、晴、日出

本次使用的数据集是一些天气图片的合集,共有4个文件夹,分别为云、雨、晴、日出。
在这里插入图片描述

2.3 处理图像信息

代码详解

👉 transforms.Compose(…)
torchvision.transforms.Compose()类的主要作用是串联多个图片变换的操作。
👉 datasets.ImageFolder(datadir, transform)
datasets.ImageFolder类用于创建一个数据集。ImageFolder假设所有的图像都存储在一个文件夹中,并且每个子文件夹代表一个类别。这个类会自动读取文件夹结构,并将每个子文件夹的名称作为类别标签。transform参数指定了在加载数据时要应用于每个图像的转换操作,即transforms.Compose(…)定义的内容。

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("/content/drive/MyDrive/k-data/weather_photos",transform=train_transforms)
total_data

输出:
在这里插入图片描述

# 分类映射
total_data.class_to_idx

输出:
在这里插入图片描述

# 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size

train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

输出:
在这里插入图片描述

2.4 加载数据集

代码详解

👉torch.utils.data.DataLoader
DataLoader将Dataset对象或自定义数据类的对象封装成一个迭代器,这个迭代器可以迭代输出Dataset的内容,同时可以实现多进程、shuffle、不同采样策略,数据校对等等处理过程。
主要参数:

  • dataset:这个就是pytorch已有的数据读取接口(比如torchvision.datasets.ImageFolder)或者自定义的数据接口的输出,该输出要么是torch.utils.data.Dataset类的对象,要么是继承自torch.utils.data.Dataset类的自定义类的对象。
  • batch_size:根据具体情况设置即可。
  • shuffle:随机打乱顺序,一般在训练数据中会采用
  • collate_fn:是用来处理不同情况下的输入dataset的封装,一般采用默认即可,除非你自定义的数据读取输出非常少见。
  • batch_sampler:从注释可以看出,其和batch_size、shuffle等参数是互斥的,一般采用默认。
  • sampler:从代码可以看出,其和shuffle是互斥的,一般默认即可。
  • num_workers:从注释可以看出这个参数必须大于等于0,0的话表示数据导入在主进程中进行,其他大于0的数表示通过多个进程来导入数据,可以加快数据导入速度
batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

三、搭建包含C3模块的模型

YOLOv5(You Only Look Once version 5)是一种流行的目标检测算法,它是YOLO系列算法的第五个版本。YOLOv5算法以其速度快、准确率高而广泛应用于计算机视觉领域。

在YOLOv5的网络结构中,C3模块是其特征提取部分的一个关键组成部分,它是CSPBottleneck(Cross Stage Partial networks Bottleneck)的变体,用于构建网络中的C3结构。CSPNet是一种网络架构,旨在通过将输入特征图分割成两部分并分别处理,然后再次拼接来减少计算量并提高网络的学习能力。

C3模块的主要特点是:

  1. 轻量级:通过分割特征图,减少了参数和计算量。
  2. 提高学习能力:分割的特征图分别通过不同的路径进行处理,可以增强网络的学习能力。
  3. 拼接操作:两部分特征图在模块的末端被拼接在一起,融合了不同层次的信息。

在这里插入图片描述

# 导入PyTorch的函数式API,它提供了许多有用的函数,如激活函数、损失函数等。
import torch.nn.functional as F

# autopad函数用于自动计算卷积层的填充大小,以确保输出特征图的大小与输入相同(SAME padding)。
def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # 卷积层
        self.bn = nn.BatchNorm2d(c2) # 归一化
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) # 激活函数

	# 输入x首先通过卷积层,然后通过批量归一化,最后通过激活函数。
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

# Bottleneck用于增加网络的深度和非线性
class Bottleneck(nn.Module):
    # Standard bottleneck
    # 如果shortcut为True且输入输出通道数相同(c1 == c2),则执行残差连接,即输出为x + self.cv2(self.cv1(x));否则,只返回第二个卷积层的输出。
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2 

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

# C3是一种轻量级的网络结构,用于提高网络的学习能力和减少计算量
class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        
        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2) 
        
        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
    
model = model_K().to(device)
model

输出:
在这里插入图片描述
在这里插入图片描述
查看模型详情

# 会生成一个表格,显示模型的每一层类型、输出形状、参数数量,以及整个模型的总参数数量、可训练参数数量、不可训练参数数量、输入大小、前向/反向传递大小、参数大小和估计的总大小。

# 统计模型参数量以及其他指标
import torchsummary as summary # 一个pytorch辅助库,用于快速查看神经网络模型的结构和参数信息
summary.summary(model, (3, 224, 224))  # 表示输入数据的形状。3指的是通道数(RGB图像),224x224指的是图像的高度和宽度。

在这里插入图片描述

四、训练模型

4.1 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

4.2 编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4.3 正式开始训练

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 20

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')

输出:
在这里插入图片描述

4.4 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

输出:
在这里插入图片描述

五、总结

这里接触到了一个新的词:残差。

残差网络(Residual Network,ResNet)是一种深度神经网络架构,由微软的研究团队在2015年提出。它的主要贡献在于解决深层网络训练中的梯度消失和梯度爆炸问题,使得网络能够训练出更深层次的模型。

  • 梯度消失和梯度爆炸:随着网络层数的增加,梯度会逐渐变小(消失)或变大(爆炸),导致深层网络难以训练。
  • 残差块(Residual Block):残差网络的核心是残差块,它由两个卷积层组成,中间通过一个捷径(shortcut)连接。残差块的结构允许网络在训练过程中学习一个残差函数,而不是直接学习输入和输出之间的映射关系,避免了梯度消失和梯度爆炸的问题。
  • 残差连接(Residual Connection):残差连接是指将输入特征直接通过捷径连接到输出特征,这种连接方式有助于网络更好地学习。
  • 23
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值