0基础深度学习项目10:基于Pytorch实现车牌识别

一、创建环境

🍖 我的环境
● 语言环境:Python3.8
● 编译器:Jupyter notebook
● 深度学习环境:
○ torch1.10.0+cu113
○ torchvision
0.11.1+cu113

二、前期准备

2.1 设置GPU

from torchvision.transforms import transforms
from torch.utils.data       import DataLoader
from torchvision            import datasets
import torchvision.models   as models
import torch.nn.functional  as F
import torch.nn             as nn
import torch,torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

输出:
在这里插入图片描述

2.2 导入数据

数据集示例:
在这里插入图片描述

import os,PIL,random,pathlib
import matplotlib.pyplot as plt
# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

data_dir = '/content/drive/MyDrive/k-data/车牌识别/015_licence_plate'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[-1].split("_")[1][:7] for path in data_paths]
print(classeNames)

输出:
在这里插入图片描述
数据集可视化:

data_paths     = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str

plt.figure(figsize=(14,5))

for i in range(18):
    plt.subplot(3,6,i+1)
    # plt.xticks([])
    # plt.yticks([])
    # plt.grid(False)
    
    # 显示图片
    images = plt.imread(data_paths_str[i])
    plt.imshow(images)

plt.show()

输出:
在这里插入图片描述

2.3 将车牌信息更新到一个向量vector中

import numpy as np

char_enum = ["京","沪","津","渝","冀","晋","蒙","辽","吉","黑","苏","浙","皖","闽","赣","鲁",\
              "豫","鄂","湘","粤","桂","琼","川","贵","云","藏","陕","甘","青","宁","新","军","使"]

number   = [str(i) for i in range(0, 10)]    # 0 到 9 的数字(列表)
alphabet = [chr(i) for i in range(65, 91)]   # A 到 Z 的字母(列表)

char_set       = char_enum + number + alphabet # 包含省的简称、数字、字母的字符集合
# 为了定义向量的形状
char_set_len   = len(char_set) # 字符集长度
label_name_len = len(classeNames[0]) # 车牌个数

# 将字符串数字化
def text2vec(text):
    vector = np.zeros([label_name_len, char_set_len]) # 用上面的字符集长度和车牌个数定义一个零向量,然后用for循环来更新向量
    for i, c in enumerate(text): # 遍历classeNames中的每个元素,i为索引,c为长度
        idx = char_set.index(c) #  找到字符在字符集合中的索引
        vector[i][idx] = 1.0 # 更新向量中对应位置的值为1.0,表示该位置的字符存在
    return vector

all_labels = [text2vec(i) for i in classeNames]

2.4 加载数据文件

import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Image

class MyDataset(data.Dataset):
    def __init__(self, all_labels, data_paths_str, transform):
        self.img_labels = all_labels      # 获取标签信息
        self.img_dir    = data_paths_str  # 图像目录路径
        self.transform  = transform       # 目标转换函数

    def __len__(self):
        return len(self.img_labels)

    # 根据索引获取数据集中的单个图像及其标签
    def __getitem__(self, index):
        image    = Image.open(self.img_dir[index]).convert('RGB') # 使用PIL库的Image.open函数打开指定索引的图像文件,并转换为RGB格式
        label    = self.img_labels[index]  # 根据索引获取图像对应的标签
        
        # 如果定义了转换函数,将其应用到图像上
        if self.transform:
            image = self.transform(image)

        return image, label  # 返回处理后的图像和标签

2.5 定义图像转换函数

total_datadir = '/content/drive/MyDrive/k-data/车牌识别/015_licence_plate'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std =[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = MyDataset(all_labels, data_paths_str, train_transforms)
total_data

2.6 划分数据集和测试集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size,test_size

输出:
在这里插入图片描述

2.7 加载数据集

train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=16,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=16,
                                          shuffle=True)

print("The number of images in a training set is: ", len(train_loader)*16)
print("The number of images in a test set is: ", len(test_loader)*16)
print("The number of batches per epoch is: ", len(train_loader)) # 每个训练批次的数据集大小

输出:
在这里插入图片描述
在这里插入图片描述

三、搭建模型

3.1 建立模型

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, label_name_len*char_set_len)
        self.reshape = Reshape([label_name_len,char_set_len])

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        # 最终reshape
        x = self.reshape(x)

        return x

# 定义Reshape层
class Reshape(nn.Module):
    def __init__(self, shape):
        super(Reshape, self).__init__()
        self.shape = shape

    def forward(self, x):
        return x.view(x.size(0), *self.shape)

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model

输出:
在这里插入图片描述

3.2 显示网络结构

在这里插入图片描述


在这里插入图片描述

四、训练模型

4.1 设置优化器和损失函数

# 优化器与损失函数
optimizer  = torch.optim.Adam(model.parameters(),
                              lr=1e-4,
                              weight_decay=0.0001)

loss_model = nn.CrossEntropyLoss()

4.2 编写训练函数和测试函数

from torch.autograd import Variable

def test(model, test_loader, loss_model):
    size = len(test_loader.dataset)
    num_batches = len(test_loader)
    
    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in test_loader:
            X, y = X.to(device), y.to(device)
            pred = model(X)

            test_loss += loss_model(pred, y).item()

            # 计算准确率
            pred = pred.view(-1, 69)  # 将预测结果转换成一个二维张量,其中-1是自动计算的维度。表示这个维度的大小由其他维度的大小决定,以保证张量的元素总数不变。69是指定的维度大小,意味着预测结果被看作是69个类别的概率分布。
            y = y.view(-1, 69)  # 将真实标签y也转换成一个二维张量,与预测结果的维度相同
            _, predicted = torch.max(pred, 1) # 找到每个预测结果中概率最高的类别索引。1表示在第二个维度(即每个样本的69个类别)上寻找最大值。返回的两个值中,第一个值是最大值,第二个值是最大值的索引,这里我们只关心索引,所以用_来忽略最大值。
            _, target = torch.max(y, 1)
            correct += (predicted == target).sum().item() # 预测正确的样本数。首先,predicted == target会生成一个由布尔值组成的张量,表示每个样本的预测是否与真实标签一致。然后,.sum()函数计算这个布尔张量中True(即1)的总数,也就是正确预测的样本数。最后,.item()将这个整数张量转换成一个普通的Python整数,然后加到correct变量上。
            
    test_loss /= num_batches
    accuracy = correct / size # 预测准确率


    print(f"Avg loss: {test_loss:>8f} \n",f"Accuracy: {accuracy:>8f}")
    return correct,test_loss

def train(model,train_loader,loss_model,optimizer):
    model=model.to(device)
    model.train()
    
    for i, (images, labels) in enumerate(train_loader, 0): #0是标起始位置的值。

        images = Variable(images.to(device))
        labels = Variable(labels.to(device))

        optimizer.zero_grad()
        outputs = model(images)

        loss = loss_model(outputs, labels)
        loss.backward()
        optimizer.step()

        if i % 1000 == 0:    
            print('[%5d] loss: %.3f' % (i, loss))

4.3 正式开始训练


test_acc_list  = []
test_loss_list = []
epochs = 30

for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model,train_loader,loss_model,optimizer)
    test_acc,test_loss = test(model, test_loader, loss_model)
    test_acc_list.append(test_acc)
    test_loss_list.append(test_loss)
print("Done!")

输出:

在这里插入图片描述

4.4 结果可视化

# 结果分析
import numpy as np
import matplotlib.pyplot as plt

x = [i for i in range(1,31)]

plt.plot(x, test_loss_list, label="Loss", alpha=0.8)

plt.xlabel("Epoch")
plt.ylabel("Loss")

plt.legend()
plt.show()

输出:
在这里插入图片描述

五、总结

在处理数据的时候一直报错,花了很多时间,然后仔细查看了一下数据集,发现有一个数据命名多了一个(1),所以在处理数据classeNames = [str(path).split(“/”)[-1].split(“_”)[1].split(“.”)[0] for path in data_paths]的时候,要把split(“.”)[0]改成[:7],就是只取前7位,因为车牌应该都是7位数的。

在神经网络中,如果我们不确定一个维度的大小,但是希望在计算中自动推断它,可以使用 -1。
这个-1告诉 PyTorch 在计算中自动推断这个维度的大小,以确保其他维度的尺寸不变,并且能够保持张量的总大小不变。
例如,[-1, 7, 69]表示这个张量的形状是一个三维张量,其中第一个维度的大小是不确定的,第二维大小为7,第三大小分别为69。-1的作用是使得总的张量大小等于7 * 69,以适应实际的输入数据大小。
在实际的使用中,通常-1用在批处理维度上,因为在训练过程中,批处理大小可能会有所不同。使用-1可以使模型适应不同大小的批处理输入数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值