Laplace变换基础

变换定义

f ( x ) f\left( x \right) f(x) t ≥ 0 t\ge 0 t0有定义,且积分
∫ 0 + ∞ f ( t ) e − s t d t    ( s 为复数 ) \int_0^{+\infty}{f\left( t \right) e^{-st}}dt\ \ \left( s\text{为复数} \right) 0+f(t)estdt  (s为复数)
在s的某一区域内收敛,则称
F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t F\left( s \right) =\int_0^{+\infty}{f\left( t \right) e^{-st}}dt F(s)=0+f(t)estdt
f ( t ) f\left( t \right) f(t)的Laplace变换式,记为 F ( s ) = L [ f ( t ) ] F\left( s \right) =\mathscr{L}\left[ f\left( t \right) \right] F(s)=L[f(t)]

周期函数的Laplace变换

对于一个以 T T T为周期的函数 f ( t ) f\left( t \right) f(t) ,当 f ( t ) f\left( t \right) f(t)在一个周期上分段连续时,有
L [ f ( t ) ] = 1 1 − e − s T ∫ 0 T f ( t ) e − s t d t       其中Re s ( s ) > 0 \mathscr{L}\left[ f\left( t \right) \right] =\frac{1}{1-e^{-sT}}\int_0^T{f\left( t \right) e^{-st}}dt\ \ \ \ \ \ \text{其中Re}s\left( s \right) >0 L[f(t)]=1esT10Tf(t)estdt      其中Res(s)>0

Laplace变换性质

1.线性性质 L [ α f 1 ( t ) + β f 2 ( t ) ] = α L [ f 1 ( t ) ] + β L [ f 2 ( t ) ] \mathscr{L}\left[ \alpha f_1\left( t \right) +\beta f_2\left( t \right) \right] =\alpha \mathscr{L}\left[ f_1\left( t \right) \right] +\beta \mathscr{L}\left[ f_2\left( t \right) \right] L[αf1(t)+βf2(t)]=αL[f1(t)]+βL[f2(t)]

2.微分性质
(1)象原函数的微分性质
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[ f\left( t \right) \right] =F\left( s \right) L[f(t)]=F(s)
L [ f ( n ) ( t ) ] = s n F ( s ) − ∑ i = 0 n − 1 s n − 1 − i f ( i ) ( 0 )    Re s ( s ) > c \mathscr{L}\left[ f^{\left( n \right)}\left( t \right) \right] =s^nF\left( s \right) -\sum_{i=0}^{n-1}{s^{n-1-i}f^{\left( i \right)}\left( 0 \right)}\ \ \ \text{Re}s\left( s \right) >c L[f(n)(t)]=snF(s)i=0n1sn1if(i)(0)   Res(s)>c

(2)象函数的微分性质
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[ f\left( t \right) \right] =F\left( s \right) L[f(t)]=F(s)
F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ]     Re s ( s ) > c F^{\left( n \right)}\left( s \right) =\left( -1 \right) ^n\mathscr{L}\left[ t^nf\left( t \right) \right] \ \ \ \ \text{Re}s\left( s \right) >c F(n)(s)=(1)nL[tnf(t)]    Res(s)>c

3.积分性质

(1)象原函数的积分性质
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[ f\left( t \right) \right] =F\left( s \right) L[f(t)]=F(s)
L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) \mathscr{L}\left[ \int_0^t{f\left( t \right)}dt \right] =\frac{1}{s}F\left( s \right) L[0tf(t)dt]=s1F(s)

(2)象函数的积分性质
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[ f\left( t \right) \right] =F\left( s \right) L[f(t)]=F(s)
L [ f ( t ) t ] = ∫ s + ∞ F ( s ) d s \mathscr{L}\left[ \frac{f\left( t \right)}{t} \right] =\int_s^{+\infty}{F\left( s \right)}ds L[tf(t)]=s+F(s)ds
一般地,有
L [ f ( t ) t n ] = ∫ s + ∞ ∫ s + ∞ . . . ∫ s + ∞ F ( s ) d s ⏟ n 次积分 \mathscr{L}\left[ \frac{f\left( t \right)}{t^n} \right] =\underset{n\text{次积分}}{\underbrace{\int_s^{+\infty}{\int_s^{+\infty}{...\int_s^{+\infty}{F\left( s \right)}ds}}}} L[tnf(t)]=n次积分 s+s+...s+F(s)ds

4.位移性质
L [ f ( t ) ] = F ( s ) \mathscr{L}\left[ f\left( t \right) \right] =F\left( s \right) L[f(t)]=F(s),则有
L [ e a t f ( t ) ] = F ( s − a )    \mathscr{L}\left[ e^{at}f\left( t \right) \right] =F\left( s-a \right) \ \ L[eatf(t)]=F(sa)  

5.延迟性质
L [ f ( t ) ] = F ( s ) , t < 0 \mathscr{L}\left[ f\left( t \right) \right] =F\left( s \right) \text{,}t<0 L[f(t)]=F(s)t<0 f ( t ) = 0 f\left( t \right) =0 f(t)=0,则对于任意非负实数 τ \tau τ
L [ f ( t − τ ) ] = e − s τ F ( s ) \mathscr{L}\left[ f\left( t-\tau \right) \right] =e^{-s\tau}F\left( s \right) L[f(tτ)]=esτF(s)

Laplace逆变换的求法

定理1(留数):

s i ( i = 1 , 2 , , , n ) s_i\left( i=1,2,,,n \right) si(i=1,2,,,n)是函数 F ( s ) F\left( s \right) F(s)的所有奇点,且当 s → ∞ s\rightarrow \infty s , F ( s ) → 0 ,F\left( s \right) \rightarrow 0 ,F(s)0,则有
f ( t ) = ∑ k = 1 n Re s [ F ( s ) e s t , s k ]     t > 0 f\left( t \right) =\sum_{k=1}^n{\text{Re}s\left[ F\left( s \right) e^{st},s_k \right]}\ \ \ t>0 f(t)=k=1nRes[F(s)est,sk]   t>0

定理2(卷积):

若函数 f 1 ( t ) f_1\left( t \right) f1(t) f 2 ( t ) f_2\left( t \right) f2(t)满足Laplace变换存在定理中的条件,且 L [ f 1 ( t ) ] = F 1 ( s ) L [ f 2 ( t ) ] = F 2 ( s ) \mathscr{L}\left[ f_1\left( t \right) \right] =F_1\left( s \right) \mathscr{L}\left[ f_2\left( t \right) \right] =F_2\left( s \right) L[f1(t)]=F1(s)L[f2(t)]=F2(s) , f 1 ( t ) ∗ f 2 ( t ) f_1\left( t \right) \ast f_2\left( t \right) f1(t)f2(t)的Laplce变换一定存在,则
L [ f 1 ( t ) ∗ f 2 ( t ) ] = L [ f 1 ( t ) ] ⋅ L [ f 2 ( t ) ] = F 1 ( s ) ⋅ F 2 ( s ) \mathscr{L}\left[ f_1\left( t \right) \ast f_2\left( t \right) \right] =\mathscr{L}\left[ f_1\left( t \right) \right] \cdot \mathscr{L}\left[ f_2\left( t \right) \right] =F_1\left( s \right) \cdot F_2\left( s \right) L[f1(t)f2(t)]=L[f1(t)]L[f2(t)]=F1(s)F2(s)

这个性质表明两个函数卷积的Laplace变换等于这两个函数Laplace变换乘积

卷积定义:
设有两个函数 f 1 ( t ) , f 2 ( t ) f_1\left( t \right) ,f_2\left( t \right) f1(t),f2(t) ,称积分
f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ f_1\left( t \right) \ast f_2\left( t \right) =\int_{-\infty}^{+\infty}{f_1\left( \tau \right) f_2\left( t-\tau \right)}d\tau f1(t)f2(t)=+f1(τ)f2(tτ)dτ
为函数 f 1 ( x ) , f 2 ( x ) f_1\left( x \right) ,f_2\left( x \right) f1(x),f2(x)的卷积

若函数 f 1 ( t ) , f 2 ( t ) f_1\left( t \right) ,f_2\left( t \right) f1(t),f2(t)满足:当 t < 0 t<0 t<0 f 1 ( t ) = f 2 ( t ) = 0 f_1\left( t \right) =f_2\left( t \right) =0 f1(t)=f2(t)=0,则有
f 1 ( t ) ∗ f 2 ( t ) = ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ f_1\left( t \right) \ast f_2\left( t \right) =\int_0^t{f_1\left( \tau \right) f_2\left( t-\tau \right)}d\tau f1(t)f2(t)=0tf1(τ)f2(tτ)dτ

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值