Fourier变换基础

Fourier变换定义

将积分运算
F ( ω ) = F [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e − j ω t d t F\left( \omega \right) =\mathscr{F}\left[ f\left( t \right) \right] =\int_{-\infty}^{+\infty}{f\left( t \right) e^{-j\omega t}}dt F(ω)=F[f(t)]=+f(t)ejωtdt
称为函数 f ( t ) f\left( t \right) f(t)的Fourier变换

将积分运算
f ( t ) = F − 1 [ F ( ω ) ] = 1 2 π ∫ − ∞ + ∞ F ( ω ) e j ω t d w f\left( t \right) =\mathscr{F}^{-1}\left[ F\left( \omega \right) \right] =\frac{1}{2\pi}\int_{-\infty}^{+\infty}{F\left( \omega \right) e^{j\omega t}}dw f(t)=F1[F(ω)]=2π1+F(ω)ejωtdw
称为函数 F ( ω ) F\left( \omega \right) F(ω)的Fourier逆变换

F ( ω ) F\left( \omega \right) F(ω)称为 f ( t ) f\left( t \right) f(t)的象函数, f ( t ) f\left( t \right) f(t)称为 F ( ω ) F\left( \omega \right) F(ω)的象原函数

Fourier变化性质

1.线性性质

F 1 ( ω ) = F [ f 1 ( t ) ]   F 2 ( ω ) = F [ f 2 ( t ) ] , α , β F_1\left( \omega \right) =\mathscr{F}\left[ f_1\left( t \right) \right] \ F_2\left( \omega \right) =\mathscr{F}\left[ f_2\left( t \right) \right] ,\alpha ,\beta F1(ω)=F[f1(t)] F2(ω)=F[f2(t)],α,β均为常数,则
F [ α f 1 ( t ) + β f 2 ( t ) ] = α F 1 ( ω ) + β F 2 ( ω ) \mathscr{F}\left[ \alpha f_1\left( t \right) +\beta f_2\left( t \right) \right] =\alpha F_1\left( \omega \right) +\beta F_2\left( \omega \right) F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω)
同样,逆变换也有线性性质

2.位移性质

F [ f ( t ± t 0 ) ] = e ± j ω t 0 F [ f ( t ) ] \mathscr{F}\left[ f\left( t\pm t_0 \right) \right] =e^{\pm j\omega t_0}\mathscr{F}\left[ f\left( t \right) \right] F[f(t±t0)]=e±jωt0F[f(t)]

3.微分性质

f ( k ) ( t ) f^{\left( k \right)}\left( t \right) f(k)(t) ( − ∞ , + ∞ ) \left( -\infty ,+\infty \right) (,+)连续或仅有有限个间断点,且 lim ⁡ t → ∞ f ( k ) ( t ) = 0 , k = 0 , 1 , 2 , , , n − 1 , \underset{t\rightarrow \infty}{\lim}f^{\left( k \right)}\left( t \right) =0,k=0,1,2,,,n-1, tlimf(k)(t)=0,k=0,1,2,,,n1,则有
F [ f ( n ) ( t ) ] = ( j ω ) n F [ f ( t ) ] \mathscr{F}\left[ f^{\left( n \right)}\left( t \right) \right] =\left( j\omega \right) ^n\mathscr{F}\left[ f\left( t \right) \right] F[f(n)(t)]=(jω)nF[f(t)]

显然还可得到导数公式
F ( n ) ( ω ) = ( − j ) n F [ t n f ( t ) ] F^{\left( n \right)}\left( \omega \right) =\left( -j \right) ^n\mathscr{F}\left[ t^nf\left( t \right) \right] F(n)(ω)=(j)nF[tnf(t)]

4.积分性质
lim ⁡ t → + ∞ ∫ − ∞ t f ( t ) d t = 0 \underset{t\rightarrow +\infty}{\lim}\int_{-\infty}^t{f\left( t \right)}dt=0 t+limtf(t)dt=0


F [ ∫ − ∞ t f ( t ) d t ] = 1 j ω F [ f ( t ) ] \mathscr{F}\left[ \int_{-\infty}^t{f\left( t \right)}dt \right] =\frac{1}{j\omega}\mathscr{F}\left[ f\left( t \right) \right] F[tf(t)dt]=jω1F[f(t)]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值