极大似然估计

极大似然估计之前没有真正的搞清楚,在听了Datawhale的机器学习课程之后,对它有一些清楚的明了 ,下面简单的对其进行介绍,由于不会使用一些公式插入,可能直接使用了图片,但是最终的目的还是为了读明白:

极大似然估计(估计分布的参数)

极大似然估计
这个方法的用途是 估计概率分布的参数值 也是得到一个函数 -> 参数
在上面 离散型的随机变量X,是概率质量函数P, 连续型的是概率密度函数p(由概率论定义)
在建模之前,我们可能会给定数据分布的一种形态,例如是正态分布或者其他
例如: 正态分布 在这里插入图片描述
其中的θ就是μ和σ要估计的参数,
例如 伯努利分布,概率p和1-p,要估计的参数就是p

所以 极大似然估计 就是一种得到 分布参数的方法

x1,x2.x3是分布X的n个独立同分布,意思是每个变量之间是独立的但是满足相同分布(概率函数相同),所以他们的联合概率就是 上面的 乘积函数

例题

在这里插入图片描述

Trick技巧,在外面加ln函数,利用其性质,将连乘转为求和项

ln也是递增函数, 它与原函数有相同的趋势,可以捕捉到相同的最大值

以后添加具体原因在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值