极大似然估计之前没有真正的搞清楚,在听了Datawhale的机器学习课程之后,对它有一些清楚的明了 ,下面简单的对其进行介绍,由于不会使用一些公式插入,可能直接使用了图片,但是最终的目的还是为了读明白:
极大似然估计(估计分布的参数)

这个方法的用途是 估计概率分布的参数值 也是得到一个函数 -> 参数
在上面 离散型的随机变量X,是概率质量函数P, 连续型的是概率密度函数p(由概率论定义)
在建模之前,我们可能会给定数据分布的一种形态,例如是正态分布或者其他
例如: 正态分布 
其中的θ就是μ和σ要估计的参数,
例如 伯努利分布,概率p和1-p,要估计的参数就是p
所以 极大似然估计 就是一种得到 分布参数的方法
x1,x2.x3是分布X的n个独立同分布,意思是每个变量之间是独立的但是满足相同分布(概率函数相同),所以他们的联合概率就是 上面的 乘积函数
例题

Trick技巧,在外面加ln函数,利用其性质,将连乘转为求和项
ln也是递增函数, 它与原函数有相同的趋势,可以捕捉到相同的最大值

7604

被折叠的 条评论
为什么被折叠?



