求连续函数最佳平方逼近的步骤:

求连续函数最佳平方逼近的步骤:

1.给定[a,b]上的连续函数f(x),及子空间
Φ = s p a n ( ϕ 0 ( x ) , ϕ 1 ( x ) , ⋯   , ϕ n ( x ) ) \Phi = span(\phi_{0}(x),\phi_{1}(x),\cdots,\phi_{n}(x)) Φ=span(ϕ0(x),ϕ1(x),,ϕn(x))

2.利用内积
( ϕ i , ϕ k ) = ∫ a b ϕ i ( x ) ϕ k ( x ) d x (\phi_i,\phi_k)=\int_{a}^{b}\phi_{i}(x)\phi_{k}(x)dx (ϕi,ϕk)=abϕi(x)ϕk(x)dx

( f , ϕ k ) = ∫ a b f ( x ) ϕ k ( x ) d x (f,\phi_k)=\int_{a}^{b}f(x)\phi_{k}(x)dx (f,ϕk)=abf(x)ϕk(x)dx

给出法方程组:
[ ( ϕ 0 , ϕ 0 ) ( ϕ 1 , ϕ 0 ) ⋯ ( ϕ n , ϕ 0 ) ( ϕ 0 , ϕ 1 ) ( ϕ 1 , ϕ 1 ) ⋯ ( ϕ n , ϕ 1 ) ⋯ ⋯ ⋯ ( ϕ 0 , ϕ n ) ( ϕ 1 , ϕ n ) ⋯ ( ϕ n , ϕ n ) ] [ c 0 c 1 ⋮ c n ] = [ ( f , ϕ 0 ) ( f , ϕ 1 ) ⋮ ( f , ϕ n ) ] \begin{bmatrix} (\phi_{0},\phi_{0}) & (\phi_{1},\phi_{0}) & \cdots & (\phi_{n},\phi_{0}) \\ (\phi_{0},\phi_{1}) & (\phi_{1},\phi_{1}) & \cdots & (\phi_{n},\phi_{1}) \\ \cdots & \cdots & & \cdots \\ (\phi_{0},\phi_{n}) & (\phi_{1},\phi_{n}) & \cdots & (\phi_{n},\phi_{n}) \\ \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ \vdots \\ c_{n}\\ \end{bmatrix}= \begin{bmatrix} (f,\phi_{0}) \\ (f,\phi_{1}) \\ \vdots \\ (f,\phi_{n}) \\ \end{bmatrix} (ϕ0,ϕ0)(ϕ0,ϕ1)(ϕ0,ϕn)(ϕ1,ϕ0)(ϕ1,ϕ1)(ϕ1,ϕn)(ϕn,ϕ0)(ϕn,ϕ1)(ϕn,ϕn)c0c1cn=(f,ϕ0)(f,ϕ1)(f,ϕn)
3.求出法方程组的解 c 0 ∗ , c 1 ∗ , ⋯   , c n ∗ c_0^*,c_1^*,\cdots,c_n^* c0,c1,,cn,得到最佳平方逼近
p n ∗ ( x ) = c 0 ∗ ϕ 0 ( x ) + c 0 ∗ ϕ 1 ( x ) + ⋯ + c n ∗ ϕ n ( x ) p_{n}^*(x)=c_{0}^*\phi_0(x)+c_{0}^*\phi_1(x)+\cdots+c_n^*\phi_n(x) pn(x)=c0ϕ0(x)+c0ϕ1(x)++cnϕn(x)

4.求出误差
δ 2 = ∥ f ∥ 2 2 − ∑ i = 0 n c i ∗ ( f , ϕ i ) \delta^2 =\|f\|_2^2 - \sum_{i=0}^n c_i^*(f,\phi_i) δ2=f22i=0nci(f,ϕi)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值