数值分析复习:最佳逼近、最佳一致逼近、最佳平方逼近

本篇文章适合个人复习翻阅,不建议新手入门使用

最佳逼近

1. 度量空间中的逼近

给定度量空间 ( X , d ) (X,d) (X,d) 及其子集 S S S,若对 X X X中任意一点 a a a S S S 中可以找到一个点 s s s 使得
d ( a , s ) = d i s t ( a , S ) d(a,s)=dist(a,S) d(a,s)=dist(a,S)则称 s s s a a a S S S 中的最佳逼近元

存在性
对度量空间中的点,紧子空间中一定有其最佳逼近元

证明

  • 由dist的定义, ∃ s n ∈ S , d ( a , s n ) → d i s t ( a , s ) \exists s_n\in S,d(a,s_n)\to dist(a,s) snS,d(a,sn)dist(a,s)
  • 由紧性得 S S S 闭, ∃ s ∈ S , s . t . d ( s n , s ) → 0 \exists s\in S,s.t.d(s_n,s)\to 0 sS,s.t.d(sn,s)0
  • 由三角不等式, d ( a , s ) ≤ d ( a , s n ) + d ( s n , s ) → d i s t d(a,s)\leq d(a,s_n)+d(s_n,s)\to dist d(a,s)d(a,sn)+d(sn,s)dist

2. 赋范线性空间中的逼近

给定赋范线性空间 ( X , ∣ ∣ ⋅ ∣ ∣ ) (X,||\cdot||) (X,∣∣∣∣) 及其子集 S S S,若对 X X X中任意一点 a a a S S S 中可以找到一个点 s s s 使得
∣ ∣ a − s ∣ ∣ = d i s t ( a , S ) ||a-s||=dist(a,S) ∣∣as∣∣=dist(a,S)则称 s s s a a a S S S 中的最佳逼近元

存在性和唯一性

  1. 对赋范线性空间中的点,有限维子空间中一定有最佳逼近元
  2. 对严格凸赋范线性空间中的点,子空间中最多有一个最佳逼近元
  3. 对严格凸赋范线性空间中的点,有限维子空间内存在唯一的最佳逼近元

证明

  1. 由度量空间的相关结论立得
  2. 同一法:设有两个最佳逼近元 s 1 , s 2 s_1,s_2 s1,s2,导出矛盾

3. 连续函数空间上的最佳逼近

3.1 多项式逼近

对给定的 f ( x ) ∈ C [ a , b ] f(x)\in C[a,b] f(x)C[a,b] ,在某种范数下,在多项式函数空间 P n \mathbb{P}_n Pn P ( x ) P(x) P(x),使得
∣ ∣ P ( x ) − f ( x ) ∣ ∣ = inf ⁡ g ∈ P n ∣ ∣ g ( x ) − f ( x ) ∣ ∣ ||P(x)-f(x)||=\inf\limits_{g\in \mathbb{P}_n} ||g(x)-f(x)|| ∣∣P(x)f(x)∣∣=gPninf∣∣g(x)f(x)∣∣注:

  • L ∞ L^{\infty} L 范数意义下, P ( x ) P(x) P(x) 称为最佳一致逼近多项式(BUAP)
  • L 2 L^2 L2 范数意义下, P ( x ) P(x) P(x) 称为最佳平方逼近多项式

定义

偏差:称 Δ ( P ) = max ⁡ x ∣ f ( x ) − P ( x ) ∣ \Delta (P)=\max\limits_x|f(x)-P(x)| Δ(P)=xmaxf(x)P(x) P ( x ) P(x) P(x) f ( x ) f(x) f(x) 的偏差

最小偏差:称 E n = inf ⁡ P ∈ P n Δ ( P ) E_n=\inf\limits_{P\in\mathbb{P}_n}\Delta (P) En=PPninfΔ(P) P ( x ) P(x) P(x) f ( x ) f(x) f(x) 的最小偏差;

偏离点:使 P ( x ) P(x) P(x) 达到最小偏差的 x x x 称为偏离点,根据其相对 f ( x ) f(x) f(x) 的位置分别称为正、负偏离点

命题
若存在 P ∗ ( x ) ∈ P n P^*(x)\in\mathbb{P}_n P(x)Pn ,使得 Δ ( P ∗ ) = E n \Delta(P^*)= E_n Δ(P)=En,则 P ∗ ( x ) P^*(x) P(x) 即为 f ( x ) f(x) f(x) P n \mathbb{P}_n Pn 中的最佳一致逼近多项式(BUAP)

3.2 存在性和唯一性

Borel存在定理: P n \mathbb{P}_n Pn 中最佳逼近多项式存在

证明

  • 对任意最小偏差 E n E_n En,可找到一列多项式 P m ( x ) P_m(x) Pm(x),使得 Δ ( P m ) → E n \Delta(P_{m})\to E_n Δ(Pm)En (Weierstrass 逼近定理可证)
  • 一列有界多项式 P m ( x ) P_m(x) Pm(x) 必有一致收敛的子列 P ∗ ( x ) P^*(x) P(x)

P m ( x ) = a 0 , m + a 1 , m x + a 2 , m x 2 + ⋯ + a n , m x n P_m(x)=a_{0,m}+a_{1,m} x+a_{2,m}x^2+\cdots+a_{n,m} x^n Pm(x)=a0,m+a1,mx+a2,mx2++an,mxn
为寻找 P ∗ ( x ) P^*(x) P(x) 的各项系数,取 n + 1 n+1 n+1 个点 x 0 , x 1 … , x n x_0,x_1\dots,x_n x0,x1,xn,有
( 1 x 0 ⋯ x 0 n 1 x 1 ⋯ x 1 n ⋮ ⋮ ⋮ 1 x n ⋯ x n n ) ⋅ ( a 0 , m a 1 , m ⋮ a n , m ) = ( P m ( x 0 ) P m ( x 1 ) ⋮ P m ( x n ) ) \begin{pmatrix} 1&x_0&\cdots&x_0^n\\ 1&x_1&\cdots&x_1^n\\ \vdots&\vdots&&\vdots\\ 1&x_n&\cdots&x_n^n\\ \end{pmatrix}\cdot \begin{pmatrix} a_{0,m}\\a_{1,m}\\\vdots\\a_{n,m}\\ \end{pmatrix}= \begin{pmatrix} P_m(x_0)\\P_m(x_1)\\\vdots\\P_m(x_n)\\ \end{pmatrix} 111x0x1xnx0nx1nxnn a0,ma1,man,m = Pm(x0)Pm(x1)Pm(xn)
由Vandermonde行列式的性质, a 0 , m , a 1 , m , … , a n , m a_{0,m},a_{1,m},\dots,a_{n,m} a0,m,a1,m,,an,m 可被唯一表示,由 P m ( x ) P_m(x) Pm(x) 的有界性得到 a 0 , m , a 1 , m , … , a n , m a_{0,m},a_{1,m},\dots,a_{n,m} a0,m,a1,m,,an,m 的有界性
故由对角线方法,可选到共同的子列使得 a 0 , m i → a 0 ∗ , … , a n , m i → a n ∗ a_{0,m_i}\to a_0^*,\dots,a_{n,m_i}\to a_n^* a0,mia0,,an,mian
P ∗ ( x ) = a 0 ∗ + a 1 ∗ x + a 2 ∗ x 2 + ⋯ + a n ∗ x n P^*(x)=a_0^*+a_1^* x+a_2^*x^2+\cdots+a_n^* x^n P(x)=a0+a1x+a2x2++anxn

  • 得到的 P ∗ ( x ) P^*(x) P(x) 即为所求
    E n ≤ Δ ( P ∗ ) ≤ Δ ( P ) + max ⁡ x ∣ P − P ∗ ∣ ≤ E n + ε → E n \begin{split} E_n&\leq \Delta (P^*)\\ &\leq \Delta (P) + \max\limits_x {|P-P^*|}\\ &\leq E_n + \varepsilon\to E_n \end{split} EnΔ(P)Δ(P)+xmaxPPEn+εEn

定理:若最佳逼近多项式存在,那么正、负偏离点必同时存在

证明:容易想象,如果多项式无法同时达到正、负偏离点,那么总可以通过上下平移的方式减小偏差

Chebyshev定理: P n \mathbb{P}_n Pn 中最佳逼近多项式存在且唯一,且 P n ( x ) P_n(x) Pn(x) 为最佳逼近多项式当且仅当不少于 n + 2 n+2 n+2 个点为正负偏离点,且交错取到

证明
充分性:(Vallee-Poussin 定理)

P ( x ) ∈ P n P(x)\in\mathbb{P}_n P(x)Pn ε ( x ) = P ( x ) − f ( x ) \varepsilon (x)=P(x)-f(x) ε(x)=P(x)f(x) x 1 < ⋯ < x N x_1<\cdots<x_N x1<<xN 上取值为非零的正负相间值 λ 1 , − λ 2 , … , ( − 1 ) N − 1 λ N , ( λ i > 0 ) \lambda_1,-\lambda_2,\dots,(-1)^{N-1}\lambda_N,(\lambda_i>0) λ1,λ2,,(1)N1λN,(λi>0) N ≥ n + 2 N\geq n+2 Nn+2 ,则有
∀ Q ( x ) ∈ P n , Δ ( Q ) ≥ min ⁡ λ i \forall Q(x)\in\mathbb{P}_n,\Delta (Q)\geq \min \lambda_i Q(x)Pn,Δ(Q)minλi

证:反证法+零点存在性定理可导出 P ( x ) = Q ( x ) P(x)=Q(x) P(x)=Q(x) ,得矛盾

必要性:只需证不少于 n + 2 n+2 n+2 个正负偏离点,用反证法
若只有 n + 1 n+1 n+1 个正负偏离点 x i x_i xi,则构造
Q ( x ) = P ( x ) + ω ∏ ( x − x i ) Q(x)=P(x)+\omega \prod\limits(x-x_i) Q(x)=P(x)+ω(xxi)适当选择 ω \omega ω 的符号,即可得到 Δ ( Q ) < Δ ( P ) \Delta (Q)<\Delta(P) Δ(Q)<Δ(P)

唯一性:同一法 + 零点存在性定理

定理
f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x) ( a , b ) (a,b) (a,b) 上存在且保号,则 f ( x ) f(x) f(x) P n \mathbb{P}_n Pn中的最佳逼近多项式满足:恰有 n + 2 n+2 n+2 个正负偏离点,且 a , b a,b a,b 均为正负偏离点

证明:反证法+Rolle定理

3.3 最小零偏差多项式

定义:(最小零偏差多项式)
0 0 0 P n \mathbb{P}_n Pn 中的最佳逼近多项式称为最小零偏差多项式,或称 Chebshev最佳逼近多项式

注:等价于 x n x^n xn P n − 1 \mathbb{P}_{n-1} Pn1 中的最佳逼近多项式

定理:(Chebshev最佳逼近多项式的结构)
最小零偏差多项式为 2 1 − n T n ( x ) 2^{1-n}T_n(x) 21nTn(x) ,其中 T n ( x ) T_n(x) Tn(x) 为 Chebshev多项式
T n ( x ) = cos ⁡ ( n arccos ⁡ x ) T_n(x)=\cos{(n\arccos{x})} Tn(x)=cos(narccosx)

证明
x n x^n xn P n − 1 \mathbb{P}_{n-1} Pn1 中的最佳逼近多项式的 n + 1 n+1 n+1 个交错点列,对于 Chebshev多项式即 cos ⁡ k π n , k = 0 , 1 , … , n \cos{\frac{k\pi}{n}},k=0,1,\dots,n cosn,k=0,1,,n

推论:
对所有首项系数为 1的 n n n 次多项式,有
max ⁡ ∣ x ∣ ≤ 1 ∣ P n ( x ) ∣ ≥ 2 1 − n \max\limits_{|x|\leq 1}|P_n(x)|\geq 2^{1-n} x1maxPn(x)21n

4. 内积空间上的最佳逼近

给定内积空间 ( X , < ⋅ > ) (X,<\cdot>) (X,<>) 及其子集 S S S,若对 X X X中任意一点 a a a S S S 中可以找到一个点 s s s 使得
< a − s , a − s > = ∣ ∣ a − s ∣ ∣ = d i s t ( a , S ) <a-s,a-s>=||a-s||=dist(a,S) <as,as>=∣∣as∣∣=dist(a,S)则称 s s s a a a S S S 中的最佳逼近元

存在性和唯一性
对内积空间,有限维子空间中必存在唯一的最佳逼近元

内积空间最佳逼近元特征定理
X X X 是与范数相容的线性内积空间, M M M 是其有限维子空间,则对任意 f ∈ X f\in X fX M M M 中的元素 ϕ ∗ \phi^* ϕ f f f 的最佳逼近元的充要条件是
< f − ϕ ∗ , ϕ > = 0 , ∀ ϕ ∈ M <f-\phi^*,\phi>=0,\forall \phi\in M <fϕ,ϕ>=0,ϕM

证明
必要性:反证法,假设存在某个 ϕ ∈ M \phi\in M ϕM,使得
α = < f − ϕ ∗ , ϕ > ≠ 0 \alpha=<f-\phi^*,\phi>\neq 0 α=<fϕ,ϕ>=0
∣ ∣ f − ϕ ∗ − α ϕ ∣ ∣ ϕ ∣ ∣ ∣ ∣ = ∣ ∣ f − ϕ ∗ ∣ ∣ 2 − 2 α < f − ϕ ∗ , ϕ ∣ ∣ ϕ ∣ ∣ > + α 2 ∣ ∣ ϕ ∣ ∣ ϕ ∣ ∣ ∣ ∣ 2 = ∣ ∣ f − ϕ ∗ ∣ ∣ 2 − α 2 ≤ ∣ ∣ f − ϕ ∗ ∣ ∣ 2 \begin{split} &||f-\phi^*-\alpha\frac{\phi}{||\phi||}||\\ =&||f-\phi^*||^2-2\alpha<f-\phi^*,\frac{\phi}{||\phi||}>+\alpha^2||\frac{\phi}{||\phi||}||^2\\ =&||f-\phi^*||^2-\alpha^2\\ \leq &||f-\phi^*||^2 \end{split} ==∣∣fϕα∣∣ϕ∣∣ϕ∣∣∣∣fϕ22α<fϕ,∣∣ϕ∣∣ϕ>+α2∣∣∣∣ϕ∣∣ϕ2∣∣fϕ2α2∣∣fϕ2 ϕ ∗ \phi^* ϕ 不是最佳逼近元

充分性:即验证“勾股定理”
∣ ∣ f − ϕ ∣ ∣ 2 − ∣ ∣ f − ϕ ∗ ∣ ∣ 2 = ∣ ∣ ϕ ∣ ∣ 2 − ∣ ∣ ϕ ∗ ∣ ∣ 2 − 2 < f , ϕ > + 2 < f , ϕ ∗ > = ∣ ∣ ϕ − ϕ ∗ ∣ ∣ 2 + 2 < f − ϕ ∗ , ϕ ∗ − ϕ > = ∣ ∣ ϕ − ϕ ∗ ∣ ∣ 2 \begin{split} &||f-\phi||^2-||f-\phi^*||^2\\ =&||\phi||^2-||\phi^*||^2-2<f,\phi>+2<f,\phi^*>\\ =&||\phi-\phi^*||^2+2<f-\phi^*,\phi^*-\phi>\\ =&||\phi-\phi^*||^2 \end{split} ===∣∣fϕ2∣∣fϕ2∣∣ϕ2∣∣ϕ22<f,ϕ>+2<f,ϕ>∣∣ϕϕ2+2<fϕ,ϕϕ>∣∣ϕϕ2从而 ∣ ∣ f − ϕ ∗ ∣ ∣ 2 ≤ ∣ ∣ f − ϕ ∣ ∣ 2 ||f-\phi^*||^2\leq ||f-\phi||^2 ∣∣fϕ2∣∣fϕ2

定理:最佳逼近元的构造
设有限维子空间 M M M 的一组基为 { ϕ 1 , ϕ 2 , … , ϕ n } \{\phi_1,\phi_2,\dots,\phi_n\} {ϕ1,ϕ2,,ϕn},则最佳逼近元可被线性表出为 ϕ ∗ = ∑ i = 1 n c i ∗ ϕ i \phi^*=\sum\limits_{i=1}^nc_i^*\phi_i ϕ=i=1nciϕi由特征定理得
∑ j = 1 n < ϕ i , ϕ j > c j ∗ = < ϕ i , f > , i = 1 , 2 , … , n \sum\limits_{j=1}^n<\phi_i,\phi_j>c_j^*=<\phi_i,f>,i=1,2,\dots,n j=1n<ϕi,ϕj>cj=<ϕi,f>,i=1,2,,n称为最佳逼近元的法方程组,其系数矩阵显然是对称正定的

参考书籍:《数值分析》李庆扬 王能超 易大义 编

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值