【BZOJ4498】—魔法的碰撞(组合数学+dp)

传送门


首先我们发现一个排列,2个魔法使之间一定要填 m a x ( d i , d i + 1 ) − 1 max(d_i,d_{i+1})-1 max(di,di+1)1个格子
而如果总共一定要填的为 k k k个,贡献就是 ( L − k n ) {L-k\choose n} (nLk)

考虑 d p dp dp出每种情况的方案数

首先按 d d d从大到小排序消除 m a x max max
我们发现一个魔法师的贡献只和他左右2边的人比他大还是小
我们考虑记一维还有几个比已经算的人要小的需要填的
考虑 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示前 i i i个人,前面人还需要填入 j j j个比他们小的,总贡献为 k k k的方案数

考虑转移只需要枚举当前这个要 0 , 1 , 2 0,1,2 0,1,2个比他小的就可以了
最后答案就是 ∑ i f [ n ] [ 0 ] [ i ] ∗ ( L − i n ) \sum_{i}f[n][0][i]*{L-i\choose n} if[n][0][i](nLi)

#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
	static char ibuf[RLEN],*ib,*ob;
	(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
	return (ib==ob)?EOF:*ib++;
}
#define gc getchar
inline int read(){
	char ch=gc();
	int res=0,f=1;
	while(!isdigit(ch))f^=ch=='-',ch=gc();
	while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
	return f?res:-res;
}
#define ll long long
#define pii pair<int,int>
#define pb push_back
#define re register
const int mod=1e9+7;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline void Add(int &a,int b){a=add(a,b);}
inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
inline void Dec(int &a,int b){a=dec(a,b);}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
	for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
const int N=44,M=1000005;
int L,n,d[N],s,fac[M],ifac[M],f[N][N][2*N*N];
inline void init(){
	fac[0]=ifac[0]=1;
	for(int i=1;i<M;i++)fac[i]=mul(fac[i-1],i);
	ifac[M-1]=ksm(fac[M-1],mod-2);
	for(int i=M-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int c(int n,int m){
	if(n<m)return 0;
	return mul(fac[n],mul(ifac[m],ifac[n-m]));
}
inline bool comp(int a,int b){
	return a>b;
}
int main(){
	init();
	L=read(),n=read();
	for(int i=1;i<=n;i++)d[i]=read()-1;
	sort(d+1,d+n+1,comp);
	f[0][1][0]=1;
	for(int i=1;i<=n;i++){
		s+=d[i];
		for(int j=0;j<=i+1;j++)
		for(int k=0;k<=s*2;k++){
			Add(f[i][j][k],mul(f[i-1][j+1][k],j+1));
			if(k>=d[i])Add(f[i][j][k],mul(f[i-1][j][k-d[i]],j*2));
			if(j&&k>=2*d[i])Add(f[i][j][k],mul(f[i-1][j-1][k-2*d[i]],j-1));
		}
	}
	int res=0;
	for(int i=0;i<=2*s;i++)Add(res,mul(f[n][0][i],c(L-i,n)));
	cout<<res;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值