明明可以 b f s bfs bfs写了个 d i j dij dij把自己强行玩 w a wa wa
有2种做法
第一种:
考虑对于同一个点的入边 i , j i,j i,j转移给出边 x x x
把式子列出来后发现是一个标准的斜率优化
在凸包上二分就可以了
复杂度 O ( m l o g m ) O(mlogm) O(mlogm)
第二种:
发现时间很小
f
[
i
]
[
j
]
f[i][j]
f[i][j]表示在点
i
i
i时间
j
j
j时最小值
用
m
a
p
map
map存一下暴力转移也可以过
复杂度
O
(
m
k
l
o
g
k
)
,
k
O(mklogk),k
O(mklogk),k是最大的时间
常数很小也可以卡过
UPDATE
好像是原题简化版
算了
C
C
F
CCF
CCF都让人家出题人做绿皮火车了也不奢求什么了
#include<bits/stdc++.h>
using namespace std;
const int RLEN=1<<21|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ib==ob)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ib==ob)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define re register
#define ll long long
#define pb push_back
#define pii pair<int,int>
#define fi first
#define se second
#define pob pop_back
#define pf push_front
#define pof pop_front
const int N=100005,M=200005;
int n,m;
ll A,B,C;
const ll inf=1e15;
map<int,ll> f[N];
#define IT map<int,ll>::iterator
struct node{
int x,y,p,q;
friend inline bool operator <(const node &a,const node &b){
return a.p<b.p;
}
}p[M];
inline ll calc(ll x){
return A*x*x+B*x+C;
}
int main(){
n=read(),m=read(),A=read(),B=read(),C=read();
for(int i=1;i<=m;i++){
p[i].x=read(),p[i].y=read(),p[i].p=read(),p[i].q=read();
f[p[i].y][p[i].q]=inf;
}
sort(p+1,p+m+1);
f[1][0]=0;
for(int i=1;i<=m;i++){
for(IT it=f[p[i].x].begin();it!=f[p[i].x].end();it++){
if((*it).fi>p[i].p)break;
if((*it).se==inf)continue;
int x=p[i].p-(*it).fi;
ll res=calc(x);
if(f[p[i].y][p[i].q]>(*it).se+res)f[p[i].y][p[i].q]=(*it).se+res;
}
}
ll res=inf;
for(IT it=f[n].begin();it!=f[n].end();it++)res=min(res,(*it).fi+(*it).se);
cout<<res;
}