一、背景
课程和习题中,我们通常接触的都是平面电磁波,但现实生活中却常常碰到柱面波和球面波,如通电导线辐射场、手机信号等。而且工程上,平面波也可以按柱面波和球面波展开。
那么电磁波在柱坐标和球坐标下的本征解是什么样的形式呢?什么样的波源可以产生这样的电磁场呢?这就是本文要讨论的问题。
二、真空中的时谐场
首先列出真空中的麦克斯韦方程:
{
∇
⋅
E
⃗
=
0
∇
×
E
⃗
=
−
∂
B
⃗
∂
t
∇
⋅
B
⃗
=
0
∇
×
B
⃗
=
1
c
2
∂
E
⃗
∂
t
\begin{cases} \nabla \cdot \vec{E}=0 \\ \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\ \nabla \cdot \vec{B}=0 \\ \nabla \times \vec{B} =\frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \\ \end{cases}
⎩⎪⎪⎪⎨⎪⎪⎪⎧∇⋅E=0∇×E=−∂t∂B∇⋅B=0∇×B=c21∂t∂E
分别表示空间中无电荷,法拉第电磁感应定律,无磁单极子,安培定律。第四项对时间求导可得:
1
c
2
∂
2
E
⃗
∂
t
2
=
∇
×
∂
B
⃗
∂
t
=
∇
×
(
−
∇
×
E
⃗
)
=
−
[
∇
(
∇
⋅
E
⃗
)
−
∇
2
E
⃗
]
=
∇
2
E
⃗
\frac{1}{c^2} \frac{\partial ^2\vec{E}}{\partial t^2} = \nabla \times \frac{\partial \vec{B}}{\partial t} = \nabla \times (-\nabla \times \vec{E})=-[\nabla(\nabla \cdot \vec{E})-\nabla ^2 \vec{E}]=\nabla ^2 \vec{E}
c21∂t2∂2E=∇×∂t∂B=∇×(−∇×E)=−[∇(∇⋅E)−∇2E]=∇2E
第三步用到了矢量微分的运算公式,可以用直角坐标展开来证明,过程比较繁琐。
在考虑时谐场,即
E
⃗
=
E
⃗
(
x
,
y
,
z
)
e
−
i
ω
t
\vec{E}=\vec{E}(x,y,z)e^{-i \omega t}
E=E(x,y,z)e−iωt,带入上式可得到:
∇
2
E
⃗
+
k
2
E
⃗
=
0
\nabla ^2 \vec{E}+k^2\vec{E}=0
∇2E+k2E=0
k
≡
ω
/
c
k \equiv \omega /c
k≡ω/c这就得到了亥姆霍兹方程。可以容易得到直角坐标系下本征解:
E
⃗
=
C
⋅
e
i
(
k
y
−
ω
t
)
z
^
\vec{E}=C \cdot e^{i(ky-\omega t)} \hat{z}
E=C⋅ei(ky−ωt)z^
三、柱坐标下的本征解
亥姆霍兹方程求解的一个难点是,Laplace算符作用的是带有方向的矢量,直角坐标系下,基矢方向不变,但柱坐标和球坐标下,基矢也会随求导改变。
为了计算简单,假设波矢方向
k
⃗
\vec{k}
k沿
r
^
\hat{r}
r^方向,电场方向沿
z
z
z轴,大小只与
r
,
ϕ
r,\phi
r,ϕ有关,与
z
z
z无关。即
E
⃗
=
E
(
r
,
ϕ
)
z
^
\vec{E}=E(r,\phi)\hat{z}
E=E(r,ϕ)z^,参考附录中的矢量微分公式可得:
∇
2
E
⃗
=
(
∇
2
E
⃗
)
z
=
∇
2
E
z
z
^
=
∇
2
E
(
r
,
ϕ
)
z
^
=
[
1
r
∂
∂
r
(
r
∂
E
∂
r
)
+
1
r
2
∂
2
E
∂
ϕ
2
+
∂
2
E
∂
z
2
]
z
^
=
(
∂
2
E
∂
r
2
+
1
r
∂
E
∂
r
+
1
r
2
∂
2
E
∂
ϕ
2
)
z
^
\nabla ^2 \vec{E}=(\nabla ^2 \vec{E})_z=\nabla ^2 E_z \hat{z}=\nabla ^2 E(r,\phi) \hat{z}=[\frac{1}{r} \frac{\partial}{\partial r}(r\frac{\partial E}{\partial r})+\frac{1}{r^2} \frac{\partial^2 E}{\partial \phi^2}+\frac{\partial^2 E}{\partial z^2}]\hat{z}\\ =(\frac{\partial^2 E}{\partial r^2}+\frac{1}{r}\frac{\partial E}{\partial r}+\frac{1}{r^2} \frac{\partial^2 E}{\partial \phi^2})\hat{z}
∇2E=(∇2E)z=∇2Ezz^=∇2E(r,ϕ)z^=[r1∂r∂(r∂r∂E)+r21∂ϕ2∂2E+∂z2∂2E]z^=(∂r2∂2E+r1∂r∂E+r21∂ϕ2∂2E)z^
带入亥姆霍兹方程,消去方向
z
^
\hat{z}
z^得:
∂
2
E
∂
r
2
+
1
r
∂
E
∂
r
+
1
r
2
∂
2
E
∂
ϕ
2
+
k
2
E
=
0
\frac{\partial^2 E}{\partial r^2}+\frac{1}{r}\frac{\partial E}{\partial r}+\frac{1}{r^2} \frac{\partial^2 E}{\partial \phi^2}+k^2E=0
∂r2∂2E+r1∂r∂E+r21∂ϕ2∂2E+k2E=0
这个方程需要用分离变量法求解:
E
=
R
⋅
Ψ
E=R\cdot\Psi
E=R⋅Ψ
{
d
2
Ψ
d
ϕ
2
+
m
2
Ψ
=
0
d
2
R
d
r
2
+
1
r
d
R
d
r
+
(
k
2
−
m
2
r
2
)
R
=
0
\begin{cases} \frac{ d^2\Psi}{d\phi^2}+m^2 \Psi=0 \\ \frac{d^2 R}{dr^2}+\frac{1}{r}\frac{d R}{d r}+(k^2-\frac{m^2}{r^2})R=0 \\ \end{cases}
{dϕ2d2Ψ+m2Ψ=0dr2d2R+r1drdR+(k2−r2m2)R=0
解得:
E
=
H
m
(
k
r
)
[
A
cos
(
m
ϕ
)
+
B
sin
(
m
ϕ
)
]
E=H_m(kr)[A\cos(m\phi)+B\sin(m\phi)]
E=Hm(kr)[Acos(mϕ)+Bsin(mϕ)]
这里R满足的方程是贝塞尔方程,不同的m可以解出不同的表达式,一般的求解方法是多项式待定系数法,解起来非常繁琐,姑且用一个整体表示它即
H
m
(
k
r
)
H_m(kr)
Hm(kr)称为汉克函数,它包含实部和虚部:
H
m
(
k
r
)
=
J
m
(
k
r
)
+
i
N
m
(
k
r
)
H_m(kr)=J_m(kr)+iN_m(kr)
Hm(kr)=Jm(kr)+iNm(kr)
J
m
(
k
r
)
J_m(kr)
Jm(kr)为贝塞尔函数,
N
m
(
k
r
)
N_m(kr)
Nm(kr)为诺伊曼函数,定性上只要知道这两个函数在方向上震荡衰减,衰减的振幅正比于
1
r
\frac {1}{\sqrt{r}}
r1,即
E
⃗
\vec{E}
E在较远处(大于一个波长就有相当好的近似)可简化为:
E
⃗
=
[
A
cos
(
m
ϕ
)
+
B
sin
(
m
ϕ
)
]
H
m
(
k
r
)
e
−
i
ω
t
z
^
≈
A
′
sin
(
m
ϕ
+
B
′
)
1
k
r
e
i
(
k
r
−
ω
t
)
z
^
\vec{E}=[A\cos(m\phi)+B\sin(m\phi)]H_m(kr)e^{-i\omega t}\hat{z}\approx A'\sin(m\phi+B')\frac{1}{\sqrt{kr}}e^{i(kr-\omega t)}\hat{z}
E=[Acos(mϕ)+Bsin(mϕ)]Hm(kr)e−iωtz^≈A′sin(mϕ+B′)kr1ei(kr−ωt)z^
我们可以看出,电场的大小绕着z轴(沿
ϕ
\phi
ϕ方向)周期震荡,沿着r方向呈现
1
r
\frac {1}{\sqrt{r}}
r1 递减,相位关系与平面波类似
e
i
(
k
r
−
ω
t
)
e^{i(kr-\omega t)}
ei(kr−ωt)。电场大小随
1
r
\frac {1}{\sqrt{r}}
r1 递减也反映了能流守恒,因为单位高度的同轴椭圆的侧面积S正比于r,单位时间流出单位侧面积的能量正比于
E
2
∝
1
/
r
E^2\varpropto 1/r
E2∝1/r,因此单位高度的同轴椭圆总能量流出守恒。
四、球坐标下的本征解
为了简化问题,假设波矢
k
⃗
\vec{k}
k的方向沿
r
^
\hat{r}
r^,电场的大小只与
r
,
θ
r,\theta
r,θ有关,而与
ψ
\psi
ψ无关,即
E
⃗
=
E
(
r
,
θ
)
θ
^
\vec{E}=E(r,\theta)\hat{\theta}
E=E(r,θ)θ^,参考附录中的矢量微分公式可得:
∇
2
E
⃗
=
(
∇
2
E
⃗
)
θ
=
∇
2
E
θ
θ
^
+
2
r
2
[
0
−
E
θ
2
sin
2
θ
+
0
]
θ
^
=
[
∂
2
E
∂
r
2
+
2
r
∂
E
∂
r
+
1
r
2
sin
θ
∂
∂
θ
(
sin
θ
∂
E
∂
θ
)
−
1
r
2
sin
2
θ
E
]
θ
^
\nabla ^2 \vec{E}=(\nabla ^2 \vec{E})_{\theta}=\nabla ^2 E_{\theta} \hat{\theta}+\frac{2}{r^2}[0-\frac{E_{\theta}}{2\sin^2\theta}+0]\hat{\theta}\\ =[\frac{\partial^2 E}{\partial r^2}+\frac{2}{r}\frac{\partial E}{\partial r}+\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{ \partial E}{\partial \theta})-\frac{1}{r^2\sin^2 \theta}E]\hat{\theta}
∇2E=(∇2E)θ=∇2Eθθ^+r22[0−2sin2θEθ+0]θ^=[∂r2∂2E+r2∂r∂E+r2sinθ1∂θ∂(sinθ∂θ∂E)−r2sin2θ1E]θ^
带入亥姆霍兹方程,消去方向
θ
^
\hat{\theta}
θ^得:
∂
2
E
∂
r
2
+
2
r
∂
E
∂
r
+
1
r
2
sin
θ
∂
∂
θ
(
sin
θ
∂
E
∂
θ
)
−
1
r
2
sin
2
θ
E
+
k
2
E
=
0
\frac{\partial^2 E}{\partial r^2}+\frac{2}{r}\frac{\partial E}{\partial r}+\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta \frac{ \partial E}{\partial \theta})-\frac{1}{r^2\sin^2 \theta}E+k^2E=0
∂r2∂2E+r2∂r∂E+r2sinθ1∂θ∂(sinθ∂θ∂E)−r2sin2θ1E+k2E=0
用分离变量法求解:
E
=
R
⋅
Θ
E=R\cdot\Theta
E=R⋅Θ
{
1
sin
θ
d
d
θ
(
sin
θ
d
Θ
d
θ
)
−
1
sin
2
θ
Θ
+
l
(
l
+
1
)
Θ
=
0
d
2
R
d
r
2
+
2
r
d
R
d
r
+
[
k
2
−
l
(
l
+
1
)
r
2
]
R
=
0
\begin{cases} \frac{1}{ \sin \theta} \frac{d }{d \theta}(\sin \theta \frac{ d \Theta}{d \theta})-\frac{1}{\sin^2 \theta}\Theta+l(l+1)\Theta=0 \\ \frac{d^2 R}{dr^2}+\frac{2}{r}\frac{d R}{d r}+[k^2-\frac{l(l+1)}{r^2}]R=0 \\ \end{cases}
{sinθ1dθd(sinθdθdΘ)−sin2θ1Θ+l(l+1)Θ=0dr2d2R+r2drdR+[k2−r2l(l+1)]R=0
解得:
E
=
C
⋅
h
l
(
k
r
)
P
l
(
cos
θ
)
E=C\cdot h_l(kr)P_l(\cos \theta)
E=C⋅hl(kr)Pl(cosθ)
其中
C
C
C为常数,
P
l
(
cos
θ
)
P_l(\cos \theta)
Pl(cosθ)是
Θ
\Theta
Θ所满足方程的解,它是
l
l
l阶
m
=
1
m=1
m=1的关联勒让德函数,这个函数在解氢原子波函数的时候也会用到。径向的方程
R
R
R满足球贝塞尔方程,其解
h
l
(
k
r
)
h_l(kr)
hl(kr)是球汉克函数:
h
l
(
k
r
)
=
j
l
(
k
r
)
+
i
n
l
(
k
r
)
h_l(kr)=j_l(kr)+in_l(kr)
hl(kr)=jl(kr)+inl(kr)
j
l
(
k
r
)
j_l(kr)
jl(kr)表示
l
l
l阶的球贝塞尔函数,
n
l
(
k
r
)
n_l(kr)
nl(kr)表示
l
l
l阶的球诺伊曼函数,与柱坐标系的结果类似,我们只需要知道这个表达式在较远处的行为:
E
⃗
=
C
⋅
P
l
(
cos
θ
)
h
l
(
k
r
)
e
−
i
ω
t
θ
^
≈
C
⋅
P
l
(
cos
θ
)
1
k
r
e
i
(
k
r
−
ω
t
)
θ
^
∝
1
r
e
i
(
k
r
−
ω
t
)
θ
^
\vec{E}= C\cdot P_l(\cos \theta)h_l(kr)e^{-i\omega t}\hat{\theta} \approx C \cdot P_l(\cos \theta)\frac{1}{kr}e^{i(kr-\omega t)}\hat{\theta}\varpropto \frac{1}{r}e^{i(kr-\omega t)}\hat{\theta}
E=C⋅Pl(cosθ)hl(kr)e−iωtθ^≈C⋅Pl(cosθ)kr1ei(kr−ωt)θ^∝r1ei(kr−ωt)θ^
因此可以定性看出,电场的方向沿
θ
^
\hat{\theta}
θ^,幅度与
ψ
\psi
ψ无关,随
θ
\theta
θ变化,随
1
/
r
1/r
1/r递减,电磁波整体的方向沿
r
^
\hat{r}
r^传播。
振幅呈 1 / r 1/r 1/r衰减也反应了能量守恒,因为球面的面积正比于 r 2 r^2 r2,球面上单位面积流出的能量正比于 E 2 ∝ 1 / r 2 E^2 \varpropto 1/r^2 E2∝1/r2,因此半径为 r r r的球面流出的能量是守恒的。
Tip:
求解亥姆霍兹方程时要利用拉普拉斯算符 ∇ 2 \nabla ^2 ∇2,与作用于不带方向的标量(如氢原子波函数)相比,当它作用于带方向的电场时,会多出几项(查看附录的矢量微分公式),这是因为这里的“方向”也是会随坐标改变的,求偏导时会多出因方向变化导致的添加项。
五、本征解对应的波源可能是什么?
现在我们已经清楚了电场波在直角坐标、柱坐标和球坐标下的本征解,假设空间中真的有这种波存在,那么它的波源是什么呢?总不可能凭空产生电磁场吧?
我们先列出这些波在基态的形式:
平面波:
E
⃗
=
C
⋅
e
i
(
k
y
−
ω
t
)
z
^
\vec{E}=C \cdot e^{i(ky-\omega t)} \hat{z}
E=C⋅ei(ky−ωt)z^
柱面波:
E
⃗
=
H
0
(
k
r
)
e
−
i
ω
t
z
^
≈
C
′
e
i
(
k
r
−
ω
t
)
k
r
z
^
\vec{E}=H_0(kr)e^{-i\omega t}\hat{z}\approx C'\frac{e^{i(kr-\omega t)}}{\sqrt{kr}}\hat{z}
E=H0(kr)e−iωtz^≈C′krei(kr−ωt)z^(
m
=
0
m=0
m=0)
球面波:
E
⃗
=
P
0
(
cos
θ
)
h
0
(
k
r
)
e
−
i
ω
t
θ
^
≈
C
′
sin
θ
e
i
(
k
r
−
ω
t
)
k
r
θ
^
\vec{E}= P_0(\cos \theta)h_0(kr)e^{-i\omega t}\hat{\theta} \approx C' \sin \theta \frac{e^{i(kr-\omega t)}}{kr}\hat{\theta}
E=P0(cosθ)h0(kr)e−iωtθ^≈C′sinθkrei(kr−ωt)θ^(
l
=
0
l=0
l=0)
由空间对称性可以猜想,平面波是由无限大平面的震荡电流产生的;柱面波是由无限长导线的震荡电流产生的;而球面波的形式就是偶极子。下面具体推导验证这些波源产生的波是否和本征解一致。
1、无限大平面的电流源
如图,无限大平面在oxz平面上,电流线密度
α
=
α
0
e
−
i
ω
t
\alpha=\alpha_0 e^{-i\omega t}
α=α0e−iωt,现在计算(0,y,0)处的电场强度,为此需要先求磁矢势
A
⃗
\vec{A}
A,再对其求旋度得到磁场强度
B
⃗
\vec{B}
B,最后再求电场强度
E
⃗
\vec{E}
E,oxz平面上,距离远点
l
=
x
2
+
z
2
l=\sqrt{x^2+z^2}
l=x2+z2处的一小段电流为
α
0
d
x
⋅
d
z
\alpha_0 dx \cdot dz
α0dx⋅dz,因为它会随时间变化,因此该点到(0,y,0)处的相位延时为
k
y
2
+
l
2
k\sqrt{y^2+l^2}
ky2+l2,可以得到磁矢势的积分形式:
A
⃗
=
μ
0
4
π
∫
α
0
e
−
i
(
ω
t
−
k
y
2
+
l
2
)
d
x
d
z
y
2
+
l
2
z
^
\vec{A}=\frac{\mu_0}{4\pi}\int\frac{\alpha_0 e^{-i(\omega t-k\sqrt{y^2+l^2})}dxdz}{\sqrt{y^2+l^2}}\hat{z}
A=4πμ0∫y2+l2α0e−i(ωt−ky2+l2)dxdzz^
x、z的平面积分转为极坐标积分,因为小段电流的相位和大小与角度无关,可直接积分:
A
⃗
=
μ
0
α
0
2
e
−
i
ω
t
∫
0
∞
e
i
k
y
2
+
l
2
l
d
l
y
2
+
l
2
z
^
\vec{A}=\frac{\mu_0\alpha_0}{2}e^{-i\omega t}\int_0^{\infty}\frac{e^{i k\sqrt{y^2+l^2}}ldl}{\sqrt{y^2+l^2}}\hat{z}
A=2μ0α0e−iωt∫0∞y2+l2eiky2+l2ldlz^
对e指数泰勒展开可得:
A
⃗
=
μ
0
α
0
2
e
−
i
ω
t
∫
0
∞
∑
n
=
0
∞
(
i
k
y
2
+
l
2
)
n
n
!
y
2
+
l
2
1
2
d
l
2
z
^
\vec{A}=\frac{\mu_0\alpha_0}{2}e^{-i\omega t}\int_0^{\infty}\sum_{n=0}^\infty \frac{({i k\sqrt{y^2+l^2}}) ^n}{n!\sqrt{y^2+l^2}}\frac{1}{2} dl^2\hat{z}
A=2μ0α0e−iωt∫0∞n=0∑∞n!y2+l2(iky2+l2)n21dl2z^
将
l
2
l^2
l2看作积分变量,分别对各项积分得:
A
⃗
=
μ
0
α
0
2
e
−
i
ω
t
∑
n
=
0
∞
(
i
k
)
n
(
n
+
1
)
!
[
(
y
2
+
L
2
)
n
+
1
2
−
y
n
+
1
]
z
^
\vec{A}=\frac{\mu_0\alpha_0}{2}e^{-i\omega t}\sum_{n=0}^\infty \frac{({i k}) ^n}{(n+1)!}[(y^2+L^2)^{\frac{n+1}{2}}-y^{n+1}]\hat{z}
A=2μ0α0e−iωtn=0∑∞(n+1)!(ik)n[(y2+L2)2n+1−yn+1]z^
这里的
L
L
L应该趋于无穷大,这样会导致
∣
A
∣
|A|
∣A∣发散,这是因为磁矢势的大小与零势点的位置有关系,对磁矢势求旋度可以消除零势点位置的影响,我们可以先求出磁场,然后再对L取无穷:
B
⃗
=
∇
×
A
⃗
=
∂
A
∂
y
x
^
=
μ
0
α
0
2
e
−
i
ω
t
∑
n
=
0
∞
(
i
k
)
n
(
n
+
1
)
!
[
(
n
+
1
)
2
(
y
2
+
L
2
)
n
−
1
2
2
y
−
(
n
+
1
)
y
n
]
x
^
\vec{B}=\nabla\times \vec{A}=\frac{\partial A}{\partial y} \hat{x}=\frac{\mu_0\alpha_0}{2}e^{-i\omega t}\sum_{n=0}^\infty \frac{({i k}) ^n}{(n+1)!}[\frac{(n+1)}{2}(y^2+L^2)^ {\frac{n-1}{2}}2y-(n+1)y^{n}]\hat{x}
B=∇×A=∂y∂Ax^=2μ0α0e−iωtn=0∑∞(n+1)!(ik)n[2(n+1)(y2+L2)2n−12y−(n+1)yn]x^
将求和级数凑成指数,容易得到:
B
⃗
=
μ
0
α
0
2
e
−
i
ω
t
∑
n
=
0
∞
[
(
i
k
y
2
+
L
2
)
n
n
!
y
y
2
+
L
2
−
(
i
k
y
)
n
n
!
]
x
^
=
−
μ
0
α
0
2
e
i
(
k
y
−
ω
t
)
x
^
+
μ
0
α
0
2
e
−
i
ω
t
e
i
k
y
2
+
L
2
y
y
2
+
L
2
x
^
\vec{B}=\frac{\mu_0\alpha_0}{2}e^{-i\omega t}\sum_{n=0}^\infty[\frac{(ik\sqrt{y^2+L^2})^n}{n!}\frac{y}{\sqrt{y^2+L^2}}-\frac{(iky)^n}{n!}]\hat{x}=-\frac{\mu_0\alpha_0}{2}e^{i(ky-\omega t)}\hat{x}+\frac{\mu_0\alpha_0}{2}e^{-i\omega t}\frac{e^{ik\sqrt{y^2+L^2}}y}{\sqrt{y^2+L^2}} \hat{x}
B=2μ0α0e−iωtn=0∑∞[n!(iky2+L2)ny2+L2y−n!(iky)n]x^=−2μ0α0ei(ky−ωt)x^+2μ0α0e−iωty2+L2eiky2+L2yx^
容易知道,第二项在
L
→
∞
L\rightarrow \infty
L→∞时为0,因此最后结果为:
B
⃗
=
−
μ
0
α
0
2
e
i
(
k
y
−
ω
t
)
x
^
\vec{B}=-\frac{\mu_0\alpha_0}{2}e^{i(ky-\omega t)}\hat{x}
B=−2μ0α0ei(ky−ωt)x^
又可求出电场:
E
⃗
=
−
w
k
^
k
×
B
⃗
=
−
μ
0
α
0
c
2
e
i
(
k
y
−
ω
t
)
z
^
\vec{E}=-\frac{w\hat{k}}{k}\times\vec{B}=-\frac{\mu_0\alpha_0c}{2}e^{i(ky-\omega t)}\hat{z}
E=−kwk^×B=−2μ0α0cei(ky−ωt)z^
这和平面波的表达式一致。
2、无限长导线电流源
假设在z轴上有变化的电流,
I
=
I
0
e
−
i
ω
t
I=I_0e^{-i\omega t}
I=I0e−iωt。接下来求解,oxy平面内,离原点r处的磁矢势
A
⃗
\vec{A}
A。同样要考虑不同位置处小段电流对r处的相位不同:
A
⃗
=
μ
0
I
0
4
π
e
−
i
ω
t
∫
−
∞
∞
e
i
k
r
2
+
l
2
d
l
r
2
+
l
2
z
^
\vec{A}=\frac{\mu_0I_0}{4\pi}e^{-i\omega t}\int_{-\infty}^{\infty}\frac{e^{ik\sqrt{r^2+l^2}}dl}{\sqrt{r^2+l^2}}\hat{z}
A=4πμ0I0e−iωt∫−∞∞r2+l2eikr2+l2dlz^
这个积分很难处理,先求电场表达式:
E
⃗
=
−
∂
A
⃗
∂
t
=
−
μ
0
I
0
ω
4
π
e
−
i
ω
t
(
−
i
)
∫
−
∞
∞
e
i
k
r
2
+
l
2
d
l
r
2
+
l
2
z
^
\vec{E}=-\frac{\partial\vec{A}}{\partial t}=-\frac{\mu_0I_0\omega}{4\pi}e^{-i\omega t}(-i) \int_{-\infty}^{\infty}\frac{e^{ik\sqrt{r^2+l^2}}dl}{\sqrt{r^2+l^2}}\hat{z}
E=−∂t∂A=−4πμ0I0ωe−iωt(−i)∫−∞∞r2+l2eikr2+l2dlz^
对比上一节柱坐标系下的本征解形式,只能先猜想积分项就是m=0时的汉克函数,实际上,我在一本参考书的课后习题上发现确实有这种关系(奚定平.贝塞尔函数.北京:高等教育出版社,1999)
我们需要用欧拉公式展开指数项,得到:
{
∫
−
∞
∞
cos
(
k
r
2
+
l
2
)
r
2
+
l
2
d
l
=
−
π
N
0
(
k
r
)
i
∫
−
∞
∞
sin
(
k
r
2
+
l
2
)
r
2
+
l
2
d
l
=
i
π
J
0
(
k
r
)
\begin{cases} \int_{-\infty}^\infty \frac{ \cos(k \sqrt{r^2+l^2})}{\sqrt{r^2+l^2}}dl= -\pi N_0(kr)\\ i\int_{-\infty}^\infty \frac{ \sin(k \sqrt{r^2+l^2})}{\sqrt{r^2+l^2}}dl=i\pi J_0(kr) \end{cases}
⎩⎨⎧∫−∞∞r2+l2cos(kr2+l2)dl=−πN0(kr)i∫−∞∞r2+l2sin(kr2+l2)dl=iπJ0(kr)
因此电场可化为:
E
⃗
=
−
∂
A
⃗
∂
t
=
−
μ
0
I
0
ω
4
π
e
−
i
ω
t
(
−
i
)
[
−
π
N
0
(
k
r
)
+
i
π
J
0
(
k
r
)
]
z
^
=
−
μ
0
I
0
ω
4
e
−
i
ω
t
[
J
0
(
k
r
)
+
i
N
0
(
k
r
)
]
z
^
\vec{E}=-\frac{\partial\vec{A}}{\partial t}=-\frac{\mu_0I_0\omega}{4\pi}e^{-i\omega t}(-i) [-\pi N_0(kr)+i \pi J_0(kr)]\hat{z}=-\frac{\mu_0I_0\omega}{4}e^{-i\omega t} [J_0(kr)+i N_0(kr)]\hat{z}
E=−∂t∂A=−4πμ0I0ωe−iωt(−i)[−πN0(kr)+iπJ0(kr)]z^=−4μ0I0ωe−iωt[J0(kr)+iN0(kr)]z^
为了保险起见,我们可以用数值的方式验证上述积分是否正确:(matlab里面有现成的贝塞尔和诺伊曼函数)
六、软件模拟
最后,为了验证这种源确实可以产生对应的电磁波,我打算用电磁波软件comsol3.5模拟。
1、平面波
初始条件及环境:
下图是无限长空腔的俯视图:
尺寸及模块:长X宽=8mX4m,RF模式下的TE模式;
region 1 为真空;region 2为PML系数物质;
border 1:垂直于纸面的面电流源
α
=
1
⋅
e
−
i
ω
t
A
\alpha=1·e^{-i\omega t} A
α=1⋅e−iωtA,频率
f
=
2
π
/
ω
=
0.5
G
H
z
f=2\pi /\omega=0.5G Hz
f=2π/ω=0.5GHz,及波长
λ
=
0.6
m
\lambda=0.6m
λ=0.6m
border 2: 连续边界条件,即磁场平行分量相等:
n
⃗
×
(
H
1
⃗
−
H
2
⃗
)
=
0
\vec{n}\times(\vec{H_1}-\vec{H_2})=0
n×(H1−H2)=0
仿真结果:
颜色表示电磁场的值,红色为正,蓝色为负。容易看出,无限大平面电流产生的确实是平面波,波长为0.6m。
选取y=0处的数据点磁场强度
H
−
x
H-x
H−x进一步验证:
重新推导磁场强度,带入数值可以得到:
H
⃗
=
(
α
0
2
)
e
i
(
k
x
−
ω
t
)
y
^
=
1
2
cos
(
k
x
)
y
^
\vec{H}=(\frac {\alpha_0}{2})e^{i(kx-\omega t)}\hat{y}= \frac {1}{2}\cos(kx)\hat{y}
H=(2α0)ei(kx−ωt)y^=21cos(kx)y^
这里令
t
=
0
t=0
t=0,取实部,可以发现理论计算比实际小一半,什么原因呢?
因为理论计算时考虑了波向y的正方向和负方向两边扩散,而模拟时相当于负方向的波和正方向叠加,因此会有二倍的效果。
二、柱面波
下图是无限长圆柱的俯视图:
尺寸及模块:三个园半径分别为0.2、5、6m,RF模式下的TE模式;
region 1 为真空;region 2为PML系数物质;
border 1:垂直于纸面的面电流源
I
=
2
π
r
α
⋅
e
−
i
ω
t
A
=
1
e
−
i
ω
t
I=2\pi r \alpha · e^{-i\omega t} A=1e^{-i\omega t}
I=2πrα⋅e−iωtA=1e−iωt,频率
f
=
2
π
/
ω
=
0.5
G
H
z
f=2\pi /\omega=0.5G Hz
f=2π/ω=0.5GHz,或波长
λ
=
0.6
m
\lambda=0.6m
λ=0.6m
border 2: 连续边界条件。
其他边界条件:PEC完美电导体,即电场无垂直分量
E
z
=
0
E_z=0
Ez=0;
值得注意的是,这里的电流源是有一定粗细的导线,这和理论推导时的假设不一样,仿真结果会在数值上于理论不一致,但仍然是贝塞尔函数。
模拟结果:
初步可以看出这是柱面波,波长接近0.6m。
选取y=0的半径上获取数据,做出电场随半径变化图
E
−
r
E-r
E−r:
将数据带入理论表达式有:(t=0,取实部)
E
⃗
=
−
μ
0
I
0
ω
4
e
−
i
ω
t
[
J
0
(
k
r
)
+
i
N
0
(
k
r
)
]
z
^
=
−
987
J
0
(
k
r
)
z
^
\vec{E}=-\frac{\mu_0I_0\omega}{4}e^{-i\omega t} [J_0(kr)+i N_0(kr)]\hat{z}=-987J_0(kr)\hat{z}
E=−4μ0I0ωe−iωt[J0(kr)+iN0(kr)]z^=−987J0(kr)z^
两者为什么会不一样呢?这就是源的问题:如果把comsol模拟的源"0.2m的圈"改成点源,可以得到与理论一致的结果。
总结
- 拉普拉斯算符对矢量的作用不同于标量,前者还要考虑不同坐标系下单位矢量随位置的变化。
- 平面波的波源是无限大平面的震荡电流(二维电流),柱面波的波源是无线长导线的震荡电流(一维波源),球面波的波源是偶极震荡(零维电流)。
- 虽然不会证明,还是列出零阶贝塞尔函数和诺伊曼函数的积分表达式:
{ N 0 ( r ) = − 1 π ∫ − ∞ ∞ cos ( r 2 + l 2 ) r 2 + l 2 d l J 0 ( r ) = 1 π ∫ − ∞ ∞ sin ( r 2 + l 2 ) r 2 + l 2 d l \begin{cases} N_0(r)=-\frac{1}{\pi}\int_{-\infty}^\infty \frac{\cos(\sqrt{r^2+l^2})}{\sqrt{r^2+l^2}}dl\\ J_0(r)=\frac{1}{\pi}\int_{-\infty}^\infty \frac{ \sin( \sqrt{r^2+l^2})}{\sqrt{r^2+l^2}}dl \end{cases} ⎩⎨⎧N0(r)=−π1∫−∞∞r2+l2cos(r2+l2)dlJ0(r)=π1∫−∞∞r2+l2sin(r2+l2)dl - 仿真模拟需要在数值上考虑更多细节,对理论的理解会更深一层。