电磁场与电磁波-1-坐标系单位矢量的变换

柱坐标系—直角坐标系

两坐标系具有共同的 z z z变量

  • 下面写出其坐标表示 ( ρ , φ , z ) → ( x , y , z ) (\rho,\varphi,z) \to (x,y,z) (ρ,φ,z)(x,y,z)
  • 以俯视图表达矢量关系直角坐标系与柱坐标系的坐标单位矢量关系图
  • 据此可列写关系式如下 e x = e ρ c o s φ − e φ s i n φ e_x=e_\rho cos\varphi-e_\varphi sin\varphi ex=eρcosφeφsinφ e y = e φ s i n φ + e φ c o s φ e_y=e_\varphi sin\varphi+e_\varphi cos\varphi ey=eφsinφ+eφcosφ e z = e z e_z=e_z ez=ez
  • 将数学表达式转化为矩阵形式 [ e x e y e z ] = [ c o s φ − s i n φ 0 s i n φ c o s φ 0 0 0 1 ] [ e ρ e φ e z ] \begin{bmatrix}e_x\\e_y\\e_z\end{bmatrix} = \begin{bmatrix}cos\varphi&-sin\varphi&0\\sin\varphi&cos\varphi&0\\0&0&1\end{bmatrix} \begin{bmatrix}e_\rho\\e_\varphi\\e_z\end{bmatrix} exeyez=cosφsinφ0sinφcosφ0001eρeφez
  • 当然,若想将从直角坐标系转为柱坐标系,只需对上式求逆即可。对于方阵,一个重要性质是 A − 1 = A T A^{-1}=A^T A1=AT,因此,我们只需对上述矩阵转置即可。下面给出结果 [ e ρ e φ e z ] = [ c o s φ s i n φ 0 − s i n φ c o s φ 0 0 0 1 ] [ e x e y e z ] \begin{bmatrix}e_\rho\\e_\varphi\\e_z\end{bmatrix} = \begin{bmatrix}cos\varphi&sin\varphi&0\\-sin\varphi&cos\varphi&0\\0&0&1\end{bmatrix} \begin{bmatrix}e_x\\e_y\\e_z\end{bmatrix} eρeφez=cosφsinφ0sinφcosφ0001exeyez

球坐标系------柱坐标系

两坐标系具有共同的 φ \varphi φ变量

  • 下面给出其坐标表示 ( r , θ , φ ) → ( ρ , φ , z ) (r,\theta,\varphi)\to(\rho,\varphi,z) (r,θ,φ)(ρ,φ,z)
  • 以正视图表达两者的坐标单位矢量关系柱坐标系与球坐标系的坐标单位矢量关系图
  • 据此可列写关系式如下 e z = e r c o s θ − e θ s i n θ e_z=e_rcos\theta-e_\theta sin\theta ez=ercosθeθsinθ e ρ = e r s i n θ + e θ c o s θ e\rho=e_rsin\theta+e_\theta cos\theta eρ=ersinθ+eθcosθ e φ = e φ e_\varphi=e_\varphi eφ=eφ
  • 将其转化为矩阵形式如下
    [ e ρ e φ e z ] = [ s i n θ c o s θ 0 0 0 1 c o s θ − s i n θ 0 ] [ e r e θ e φ ] \begin{bmatrix} e_\rho \\ e_\varphi \\e_z \end{bmatrix} = \begin{bmatrix} sin\theta & cos\theta &0 \\ 0 & 0 & 1 \\ cos\theta &-sin\theta &0 \end{bmatrix} \begin{bmatrix} e_r \\ e_\theta\\ e_\varphi \end{bmatrix} eρeφez=sinθ0cosθcosθ0sinθ010ereθeφ
  • 同理,可将柱坐标系转换为球坐标系,只需求其逆。下面给出结果 [ e r e θ e φ ] = [ s i n θ 0 c o s θ c o s θ 0 − s i n θ 0 1 0 ] [ e ρ e φ e z ] \begin{bmatrix} e_r \\ e_\theta\\ e_\varphi \end{bmatrix} = \begin{bmatrix} sin\theta & 0 &cos\theta \\ cos\theta & 0 & -sin\theta \\ 0 &1 &0 \end{bmatrix} \begin{bmatrix} e_\rho \\ e_\varphi \\e_z \end{bmatrix} ereθeφ=sinθcosθ0001cosθsinθ0eρeφez

直角坐标系—球坐标系

由于直角坐标系和球坐标系没有相同元素,因此前文的方法不再适用(再用要付出代价!)
我们采用的办法是:利用已有结果进行迭代

  • 将直角坐标系与柱坐标系的关系式代入柱坐标系与球坐标系的关系式中,可以得到直角坐标系与球坐标系的关系式
  • 联立两式 [ e x e y e z ] = [ c o s φ − s i n φ 0 s i n φ c o s φ 0 0 0 1 ] [ e ρ e φ e z ] \begin{bmatrix}e_x\\e_y\\e_z\end{bmatrix} = \begin{bmatrix}cos\varphi&-sin\varphi&0\\sin\varphi&cos\varphi&0\\0&0&1\end{bmatrix} \begin{bmatrix}e_\rho\\e_\varphi\\e_z\end{bmatrix} exeyez=cosφsinφ0sinφcosφ0001eρeφez [ e ρ e φ e z ] = [ s i n θ c o s θ 0 0 0 1 c o s θ − s i n θ 0 ] [ e r e θ e φ ] \begin{bmatrix} e_\rho \\ e_\varphi \\e_z \end{bmatrix} = \begin{bmatrix} sin\theta & cos\theta &0 \\ 0 & 0 & 1 \\ cos\theta &-sin\theta &0 \end{bmatrix} \begin{bmatrix} e_r \\ e_\theta\\ e_\varphi \end{bmatrix} eρeφez=sinθ0cosθcosθ0sinθ010ereθeφ
  • 于是得到 [ e x e y e z ] = [ s i n θ c o s φ c o s θ c o s φ − s i n φ s i n θ s i n φ c o s θ s i n φ c o s φ c o s θ − s i n θ 0 ] [ e r e θ e φ ] \begin{bmatrix}e_x\\e_y\\e_z\end{bmatrix} = \begin{bmatrix}sin\theta cos\varphi & cos\theta cos\varphi &-sin\varphi\\sin\theta sin\varphi & cos\theta sin\varphi & cos\varphi\\cos\theta & -sin\theta & 0 \end{bmatrix}\begin{bmatrix} e_r \\ e_\theta\\ e_\varphi \end{bmatrix} exeyez=sinθcosφsinθsinφcosθcosθcosφcosθsinφsinθsinφcosφ0ereθeφ
  • 同理可求其逆得到直角坐标系向球坐标系转化的公式,下面直接给出结果 [ e r e θ e φ ] = [ s i n θ c o s φ s i n θ s i n φ c o s θ c o s θ c o s φ c o s θ s i n φ − s i n θ − s i n φ c o s φ 0 ] [ e ρ e φ e z ] \begin{bmatrix} e_r \\ e_\theta\\ e_\varphi \end{bmatrix} =\begin{bmatrix}sin\theta cos\varphi & sin\theta sin\varphi & cos\theta\\ cos\theta cos\varphi &cos\theta sin\varphi & -sin\theta\\ -sin\varphi & cos\varphi & 0 \end{bmatrix} \begin{bmatrix} e_\rho \\ e_\varphi \\e_z \end{bmatrix} ereθeφ=sinθcosφcosθcosφsinφsinθsinφcosθsinφcosφcosθsinθ0eρeφez
  • 4
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值