非结构化数据清洗实战(维基百科XML数据处理)
1. 引言
随着互联网信息的爆炸性增长,非结构化数据(Unstructured Data)正以惊人的速度增长。其中,维基百科作为全球最大的开放知识库,其数据以XML格式定期对外发布,包含了海量的文本、图片及各种元数据。维基百科XML数据文件通常体积巨大,包含大量嵌套标签、链接、引用、模板信息等,给数据清洗与结构化处理带来了极大的挑战。
本文将以维基百科XML数据为案例,从数据介绍、数据清洗理论、处理流程、GPU加速以及数据统计与可视化等多个角度,详细阐述如何使用Python进行非结构化数据清洗的全流程实践。我们将展示如何通过分块处理、迭代解析以及GPU并行加速等手段,从庞大的XML文件中提取出我们所需要的纯净文本数据,为后续数据分析、文本挖掘和自然语言处理打下坚实基础。
2. 数据背景与挑战
2.1 维基百科XML数据概述
维基百科定期发布的XML数据文件包含了所有页面的信息,每个页面的数据均以XML标签的形式存储。其主要内容包括:
- 页面标题(title)
- 页面唯一标识符(id)