目录
- 模型监控与漂移检测(Evidently分析模型衰退)
-
- 1. 引言
- 2. 项目背景与意义
-
- 2.1 模型监控的重要性
- 2.2 数据漂移检测
- 2.3 项目意义
- 3. 数据集生成与介绍
-
- 3.1 数据集构成
- 3.2 数据生成方法
- 4. 模型监控与漂移检测理论基础
-
- 4.1 模型性能监控
- 4.2 数据漂移检测
- 4.3 关键指标与公式
- 5. Evidently建模与GPU加速应用
- 6. Dash仪表盘与GUI混合实现
- 7. 系统整体架构
- 8. 数学公式与关键指标
- 9. 完整代码实现
- 10. 代码自查与BUG排查
- 11. 总结与展望
- 12. 结语
模型监控与漂移检测(Evidently分析模型衰退)
1. 引言
在金融、医疗以及各类商业应用中,机器学习模型一旦部署,往往需要长期运行以提供实时预测和决策支持。然而,随着时间推移,数据分布可能发生变化——即所谓的“数据漂移”或“模型衰退”。这会导致模型预测性能下降,严重时甚至带来重大风险。因此,对模型进行实时监控和漂移检测就显得尤为重要。
本文将介绍如何利用 Python 的 Evidently 库对一个信用评分模型进行模型监控和数据漂移检测。我们将详细阐述数据漂移的基本理论、Evidently 的工作原理及其使用方法,并通过模拟生成大规模信贷数据构造一个逻辑回归模型,再利用 Evidently 计算模型性能、数据分布变化等关键指标,检测模型是否发生漂移。为满足工业级数据处理需求,我们在数据预处理和数值计算时将采用 NumPy 与 Numba 加速,同时通过 Dash 与 PyQt 混合实现交互式仪表盘展示监控结果。
程序运行结果: