目录
强化学习(Q-learning、DQN) —— 理论、案例与交互式 GUI 实现
一、引言
强化学习作为机器学习的重要分支,在游戏、机器人控制、推荐系统和资源分配等众多领域都取得了突破性成果。其基本思想是通过智能体与环境的交互,不断试错,学习如何采取最优行动以最大化累积回报。Q-learning 是一种基于值函数的经典强化学习算法,而深度 Q 网络(DQN)则将深度学习与 Q-learning 相结合,从而可以处理高维状态空间和复杂环境问题。
本文将系统地介绍强化学习的基本理论,详细讲解 Q-learning 和 DQN 算法的原理、数学推导与实现步骤,并结合典型案例展示其在实际任务中的应用。为了帮助工程师和研究者更直观地理解算法求解过程,我们还设计了一套基于 Python 与 PyQt6 的交互式 GUI 演示系统,用户可以通过图形界面实时调节参数、观察 Q 值函数更新及策略演化情况,从而更深入地掌握强化学习的核心技术。