深度学习模型水印技术详解及python实现

目录

    • 一、前言
    • 二、模型水印技术概述
      • 2.1 白盒水印
      • 2.2 黑盒水印
      • 2.3 训练总目标
    • 三、数据生成与预处理
      • 3.1 CIFAR‑10 数据
      • 3.2 触发器样本生成
    • 四、核心数学公式
    • 五、异步任务调度与 GPU 加速
    • 六、PyQt6 GUI 设计
    • 七、完整代码实现
    • 八、自查测试与总结
    • 九、展望

摘要

本博客聚焦 “深度学习模型水印技术”,以 Python + PyQt6 实现一个演示系统,展示如何在训练过程中向卷积神经网络(CNN)模型嵌入水印,并在白盒/黑盒场景下进行水印验证。全文结构如下:

  1. 前言:介绍模型水印的背景、分类与价值。
  2. 模型水印技术概述:阐述白盒水印、黑盒水印与不可见标记的核心原理。
  3. 数据生成与预处理:使用 CIFAR‑10 数据集和随机触发器图像保存到 ./data
  4. 系统架构与流程:使用低版本 Mermaid 绘制架构与任务流程图。
  5. 核心数学公式:展示含水印训练目标函数与验证准则。
  6. 异步任务调度与 GPU 加速:结合 PyQt6 QThreadPool 与 PyTorch GPU 并行训练。
  7. PyQt6 GUI 设计:实现 8 大功能模块:数据加载、模型训练、嵌入水印、白盒提取、黑盒查询、性能监控、导出模型、帮助文档。
  8. 完整代码实现:提供可执行的 Py
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值