目录
-
- 一、前言
- 二、模型水印技术概述
-
- 2.1 白盒水印
- 2.2 黑盒水印
- 2.3 训练总目标
- 三、数据生成与预处理
-
- 3.1 CIFAR‑10 数据
- 3.2 触发器样本生成
- 四、核心数学公式
- 五、异步任务调度与 GPU 加速
- 六、PyQt6 GUI 设计
- 七、完整代码实现
- 八、自查测试与总结
- 九、展望
摘要
本博客聚焦 “深度学习模型水印技术”,以 Python + PyQt6 实现一个演示系统,展示如何在训练过程中向卷积神经网络(CNN)模型嵌入水印,并在白盒/黑盒场景下进行水印验证。全文结构如下:
- 前言:介绍模型水印的背景、分类与价值。
- 模型水印技术概述:阐述白盒水印、黑盒水印与不可见标记的核心原理。
- 数据生成与预处理:使用 CIFAR‑10 数据集和随机触发器图像保存到
./data
。 - 系统架构与流程:使用低版本 Mermaid 绘制架构与任务流程图。
- 核心数学公式:展示含水印训练目标函数与验证准则。
- 异步任务调度与 GPU 加速:结合 PyQt6
QThreadPool
与 PyTorch GPU 并行训练。 - PyQt6 GUI 设计:实现 8 大功能模块:数据加载、模型训练、嵌入水印、白盒提取、黑盒查询、性能监控、导出模型、帮助文档。
- 完整代码实现:提供可执行的 Py