《从零构建大模型》中文版它来了!带你从零打造自己的大语言模型 (LLM)!

在 AI 浪潮席卷全球的今天,ChatGPT、Gemini 等大语言模型(LLM)展现出的惊人能力,让我们对人工智能的未来充满想象。你是否也曾惊叹于它们的智慧,同时又好奇这些庞大而复杂的模型背后,究竟隐藏着怎样的奥秘?

你是否厌倦了仅仅作为 API 的使用者,渴望真正理解 LLM 的核心原理?

你是否希望不仅能“用”模型,更能亲手搓一个模型?

如果你的答案是肯定的,那么今天我们要介绍的这本书,绝对不容错过!

img

这本书有多火?告诉你一个事实:它在尚未正式出版时就已经吸引了无数目光和业内大咖的推荐!其配套的 GitHub 项目更是狂揽了 42.6k+ Star ⭐ (还在持续增长中!),足以证明其内容的价值和社区的热情。而在正式发售后,美亚评分也迅速达到了惊人的 4.7 分 (满分 5 分)!

img

img

这不仅仅是一本书,更是一个经过了社区检验、备受期待的学习资源。它就是由知名机器学习专家 Sebastian Raschka 撰写的 《Build a Large Language Model (From Scratch)》

为什么这本书如此特别?

市面上关于 LLM 的教程和资料层出不穷,但《Build a Large Language Model (From Scratch)》这本书能在发布前后都获得如此高的关注,其独特之处在于:

  1. 💡 真正的“从零开始” (Truly From Scratch): 它不是简单地调用 Hugging Face 等高级库的几行代码。相反,它会带你使用 Python 和 PyTorch (或者你选择的其他框架,核心概念是通用的),一步步、一行行地构建起一个类似 GPT 的 LLM。从数据处理、分词 (Tokenization) 到注意力机制 (Attention)、Transformer 架构,再到预训练 (Pretraining) 和微调 (Finetuning),你将全程参与!
  2. 🧠 深入核心原理 (Deep Dive into Fundamentals): 这本书不仅仅是教你“怎么做”,更重要的是让你理解“为什么这么做”。作者以其清晰易懂的风格,深入浅出地讲解了 LLM 背后的关键概念和数学原理,让你彻底告别“黑箱”认知。这也许是它能获得如此高评价的原因之一。
  3. 💪 强调动手实践 (Hands-on Approach): 理论与实践紧密结合。书中提供了丰富的代码示例(GitHub 仓库就是最好的证明!),引导你动手实现每一个关键模块。完成这本书的学习,你不仅能收获扎实的理论知识,更能获得一个自己亲手构建、可以运行的 LLM 项目。
  4. 🚀 拒绝浅尝辄止 (Beyond Surface Level): 它涵盖了构建一个现代 LLM 所需的完整流程,包括数据准备、模型架构设计、训练策略、评估方法等,为你构建一个系统性的知识框架。

img

img

这本书适合谁读?

  • 👨‍💻 机器学习工程师/开发者: 希望深入理解 LLM 内部机制,提升模型构建和调优能力。
  • 🎓 学生/研究人员: 正在学习深度学习和自然语言处理,渴望掌握 LLM 的前沿技术和底层原理。
  • 🤔 技术爱好者: 对 AI 充满好奇,具备一定的 Python 和深度学习基础 (了解 PyTorch 会更有帮助),希望挑战自己,从根本上理解 LLM。

你将从书中收获什么?

  • 掌握文本数据预处理和 Tokenization 的常用方法。
  • 理解 词嵌入 (Word Embeddings) 的概念与实现。
  • 彻底搞懂 注意力机制 (Attention Mechanisms) 的工作原理。
  • 学会构建 Transformer 的解码器 (Decoder) 核心架构。
  • 了解 预训练 (Pretraining) 大模型的完整流程与关键技巧。
  • 学习如何进行 微调 (Finetuning) 以适应特定任务。
  • 掌握评估 LLM 性能的常用 指标 (Metrics) 和方法。
  • 最终,你将拥有一个亲手构建的、虽然规模不大但五脏俱全的 工作 LLM

img

关于作者

Sebastian Raschka 博士是机器学习和深度学习领域广受尊敬的专家、教育家和作家。他以其清晰的讲解、对实践的重视以及开源精神而闻名。他的作品(包括经典的《Python Machine Learning》)一直备受读者好评,是许多人入门和进阶机器学习领域的首选读物。这本书的成功再次证明了他在该领域的深厚功力。

结语

在这个 LLM 技术日新月异的时代,仅仅停留在应用层面是远远不够的。《Build a Large Language Model (From Scratch)》为你提供了一个经过社区验证、广受好评的绝佳机会,让你从根本上理解、掌握并亲手创造这项激动人心的技术。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 构建大型语言模型中文版本 #### 所需资源和技术准备 构建大型语言模型LLM),尤其是针对中文的语言模型,涉及大量的计算资源和特定的技术栈。对于硬件需求而言,GPU集群通常是必不可少的选择,因为它们能够加速矩阵运算并支持分布式训练。软件方面,则依赖于诸如TensorFlow这样的深度学习框架[^1]。 为了确保模型具备良好的泛化能力,在数据收集阶段应尽可能广泛地覆盖不同领域、风格以及主题的内容。这不仅有助于提高模型的表现力,还使得其更适用于多样化的应用场景。此外,还需要考虑获取高质量语料库的方法,比如通过爬取网页、整理书籍资料等方式来积累足够的原始素材用于后续处理。 #### 数据预处理与清洗 在获得大量文本之后,下一步是对这些材料进行必要的清理工作。具体来说,去除无关字符、统一编码格式、分词标注等操作都是不可或缺的部分。特别是对于中文而言,由于不存在天然的单词边界标记,因此有效的分词工具显得尤为重要。可以采用Jieba或其他成熟的第三方库来进行这项任务;同时也要注意保留一些特殊的表达形式如成语、专有名词等不被错误分割开来的可能性。 #### 预训练过程概述 当准备好干净的数据集后就可以着手实施预训练环节了。按照之前提到过的Next Token Prediction方法论,即给定一段连续的文字序列作为输入X,目标Y则是预测下一个可能出现的位置处应该是什么样的token(词语/子字)[^3]。此过程中会反复迭代更新参数直至收敛为止。值得注意的是,考虑到内存占用等因素的影响,实际编程时往往还会引入截断机制(truncation),仅选取固定长度范围内的片段参与每一轮的学习活动当中去。 ```python import torch from transformers import BertTokenizer, BertForMaskedLM tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForMaskedLM.from_pretrained('bert-base-chinese') text = "这是用来测试的一句话" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_token_ids = torch.argmax(outputs.logits, dim=-1) reconstructed_text = tokenizer.decode(predicted_token_ids[0].tolist()) print(reconstructed_text) ``` 这段代码展示了如何利用已有的BERT-Chinese模型完成简单的掩码语言建模任务。当然如果要真正意义上创建全新的大体量LLMs则需要编写更加复杂的脚本来执行端到端式的自监督学习流程。 #### 微调优化策略 经过长时间充分训练得到的基础版LLM虽然已经拥有了一定程度的理解能力和生成水平,但在某些特殊场景下可能仍然存在不足之处。这时可以通过迁移学习的方式对其进行针对性改进——也就是所谓的微调(fine-tuning)。例如,在对话系统里加入更多的人机交互样本;或者是在机器翻译项目中补充平行句对等等。总之就是要根据具体的业务逻辑挑选合适类型的额外指导信息注入进去从而进一步提升性能指标。 #### 实战案例分享 最后值得一提的是,《从开始学习PyTorch2.0》这本书籍提供了详尽的大规模神经网络设计指南,其中涵盖了多个关于NLP领域的实践范例,包括但不限于基于循环神经网络的情感分析实验、使用Transformers架构实现多轮次聊天机器人等功能模块开发经验总结等内容[^4]。读者可以从中学到很多宝贵的知识点,并将其灵活运用至个人研究课题之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值