Q - POJ 1195 树状数组(二维树状数组,点修改,区间查询)

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The squares form an S * S matrix with the rows and columns numbered from 0 to S-1. Each square contains a base station. The number of active mobile phones inside a square can change because a phone is moved from a square to another or a phone is switched on or off. At times, each base station reports the change in the number of active phones to the main base station along with the row and the column of the matrix. 

Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area. 

Input

The input is read from standard input as integers and the answers to the queries are written to standard output as integers. The input is encoded as follows. Each input comes on a separate line, and consists of one instruction integer and a number of parameter integers according to the following table. 


The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and 0 <= Y <= 3. 

Table size: 1 * 1 <= S * S <= 1024 * 1024 
Cell value V at any time: 0 <= V <= 32767 
Update amount: -32768 <= A <= 32767 
No of instructions in input: 3 <= U <= 60002 
Maximum number of phones in the whole table: M= 2^30 

Output

Your program should not answer anything to lines with an instruction other than 2. If the instruction is 2, then your program is expected to answer the query by writing the answer as a single line containing a single integer to standard output.

Sample Input

0 4
1 1 2 3
2 0 0 2 2 
1 1 1 2
1 1 2 -1
2 1 1 2 3 
3

Sample Output

3
4

题意;

操作0,  初始化 S * S大小的地图,值为0

操作 1, 输入 X Y A, 将地图中坐标为 (X,Y)的值加A

操作2, 输入 L B R T 查询 区间   点(L, B)与点 (R, T)组成的矩形区间内点的和;  (X,Y)   L<=X<=R , B<=Y<=T,

操作3, 结束程序


#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<stack>
using namespace std;
const int maxn = 1111;
int mapp[maxn][maxn];
int n;

//二维数组的常规操作;
int lowbit(int x)
{
    return x&(-x);
}
void modify(int a, int b, int val)
{
    for(int i=a; i<=n; i+=lowbit(i))
    {
        for(int j=b; j<=n; j+=lowbit(j))
        {
            mapp[i][j]+=val;
        }
    }
}
int sum(int x, int y)
{
    int ans = 0;
    for(int i=x; i>0; i-=lowbit(i))//如果lowbit(0)=0,i=0, j=0则无法进入for循环中;
    {
        for(int j=y; j>0; j-=lowbit(j))
        {
            ans+=mapp[i][j];
        }
    }
    return ans;
}
//表示点(x2, y2)到(x1, y1)组成的矩形内所包含的点的和;
int getsum(int x1, int y1, int x2, int y2)
{
    return sum(x2, y2)-sum(x1-1, y2)-sum(x2, y1-1)+sum(x1-1, y1-1);
}


int main()
{
    int p;
    while(scanf("%d%d", &p, &n)!=EOF)
    {
        memset(mapp, 0, sizeof(mapp));
        int order;
        int a, b, c, d;
        while(scanf("%d", &order)!=EOF&&order!=3)
        {
            if(order==1)
            {
                scanf("%d%d%d",&a, &b, &c);
                modify(a+1, b+1, c);
            }
            else
            {
                scanf("%d%d%d%d", &a, &b, &c, &d);
                int ans = getsum(a+1, b+1, c+1, d+1);//为了使i, j的值不为0;//因为所建的树状数组不包含原点,所以坐标都要往右移;
                printf("%d\n",ans);
            }
        }
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值