求旋转体体积

1.圆盘法

将图形想象成无数个超级小的圆柱体叠在一起,则dV=πr^2dx或dy,其中r根据函数和旋转轴确定,dx或dy由旋转轴的选择确定。一般情况下(即y用x表示),绕x轴或y=a旋转时,用圆盘法

例如y=x^2与y=2和y轴围成的图形绕y轴旋转,则r=√(y),选择dy,积分上下限为0到2

y=x^2与x=2和x轴围成的图形绕x轴旋转,则r=x^2,选择dx,积分上下限为0到2

假如旋转体中,每一层都是两个同心圆围成的区域,即整个旋转体类似于一个甜甜圈,则

其中f(x)离旋转轴y=a更远

例如,下图是y=-x+4和y=x的图像,两者与y轴围成的图像绕x轴旋转时,f(x)为-x+4,a=0,但假如绕y=4旋转,此时f(x)为x,a=4

2.柱壳法

将图形看作是一堆圆柱体计算厚度的表面一层套在一起(更通俗一点,就是长短和半径不同的厕纸纸筒套在一起),此时dV=2πr*|f(x)|dx,r由旋转轴和函数确定,选择|f(x)|dx还是|f(y)|dy由旋转轴确定, 一般情况下(即y用x表示),绕y轴或x=a旋转时,用圆盘法

因为一个柱壳的体积就是周长乘以高度乘以厚度,周长为2πr,高度为|f(x)|,厚度为dx。

例如,求y=x^2-2x,x=1,x=3,x轴围成的图形绕y轴旋转得到的体积。此时x=r

在这种情况下,只需要分别求f大于0和小于0的部分的体积,相加即可,不会出现上面那种一部分减去另一部分的情况

### 使用GeoGebra计算旋转体体积 #### 准备工作 为了在GeoGebra中创建并计算旋转体体积,需先熟悉其基本操作环境。对于初次使用者而言,建议通过官方文档或在线教程学习界面布局以及常用工具的功能[^2]。 #### 创建函数图像 打开GeoGebra后,在代数区输入待旋转曲线对应的方程表达式。例如,如果想要围x旋转y=f(x),则直接键入`f(x)=...`形式的具体解析式来定义该连续函数图形。 #### 构建旋转实体模型 利用命令栏执行特定指令实现三维空间内的物体构建。针对解由给定区间[a,b]上某条平滑曲线坐标形成的立体几何形状问题,可采用如下方法: - 输入 `Surface(u, f(u)*cos(v), f(u)*sin(v), u, a, b, v, 0, 2π)` 来生成基于参数化描述的曲面;其中u代表自变量范围而v控制着环角度变化。 此过程能够直观展示出所关心区域经旋转变换后的形态特征。 ```python # Python伪代码示意(实际操作应在GeoGebra环境中完成) def create_rotated_surface(f, lower_limit, upper_limit): surface_equation = "Surface(u, {}*cos(v), {}*sin(v), u, {}, {}, v, 0, 2*pi)".format( str(f), str(f), str(lower_limit), str(upper_limit) ) return surface_equation ``` #### 应用积分原理估算体积值 根据微分学理论可知,当考虑无限细分下的薄片累加效果时,整个封闭区域内各部分贡献之总即为目标量度——此处特指旋转体体积V。具体到数值近似层面,则可通过离散采样点集的方式逐步逼近真实结果。然而,在GeoGebra里更推荐运用内置功能简化流程:选择“积分”选项卡下相应的子菜单项,按照提示设置好边界条件之后即可自动得出精确答案[^3]。 #### 实际案例分析 假设存在半径为R的球形物体浸没于水中,此时截取任意水平位置h处厚度dh的小圆盘作为研究单元。依据相似三角形性质推导得知,该层面积A(h)满足关系\[ A(h)=\pi(R^{2}-(R-h)^{2}) \][^3]。进一步地,借助上述提及的技术手段便能轻松获得整体结构占据的空间大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值