问题 设D为一平面区域,L为不穿过D内部的共面直线,求D绕L旋转一周所成旋转体的体积。
结论 由连续曲线y=f(x),其中f(x)≥0,以及直线x=a,x=b及x轴所围成的曲边梯形D绕不穿过曲边梯形内部的共面直线L:Ax+By+C=0旋转一周所成的旋转体的体积为:

证明 曲边梯形D上任取一点P(x,y),则x,y的变化范围为0≤y≤f(x);a≤x≤b.点P(x,y)到L的距离


在点P(x,y)处分别给出x,y的微分dx,dy,得曲边梯形上的面积微元dσ,且知dσ=dxdy。面积为dσ的面积微元绕L旋转所形成的立体体积微元

所以有

几种特殊情形
(1) D: g(x)

(2) D: u(y)

(3) D: r1(q)2(q), a

(4) D: 0

(5) D: 0

(6) D: 0

例子
1. 求椭圆x2+2y2=1绕直线x+y=2旋转一周所成旋转体的体积。
解 平面区域D可表示为:

区域D与直线x+y=2的位置关系如下图:

对区域D内任意点都有:x + y –2<0,所以

2. 求心形线r=4(1+cosθ)及射线θ=0及θ=π/2所围成的图形绕极轴旋转一周所成旋转体的体积.
解 区域D为:
0
对D内任意点都有y>0,所以有
