例
如图所示,求由
y
=
x
2
y=x^2
y=x2绕y轴旋转而成的旋转体的体积
方法一:对y积分(Disks)
如图所示,盘片的面积为
π
x
2
\pi x^2
πx2,厚度为
d
y
dy
dy的盘片的体积为
d
V
=
π
x
2
d
y
dV=\pi x^2dy
dV=πx2dy ,则体积
V
V
V的计算方法如下:
V
=
∫
0
a
π
x
2
d
y
V=\int_0^a{\pi x^2dy}
V=∫0aπx2dy
换元
y
=
x
2
\text{换元}y=x^2
换元y=x2
V
=
∫
0
a
π
y
d
y
=
π
y
2
2
∣
0
a
=
π
a
2
2
V=\int_0^a{\pi y\ dy}=\left. \pi \frac{y^2}{2} \right|_{0}^{a}=\pi \frac{a^2}{2}
V=∫0aπy dy=π2y2∣∣∣∣0a=π2a2
方法二:对x积分(Shells)
x
x
x为圆柱的半径,圆柱的厚度为
d
x
dx
dx,高为
a
−
x
2
a-x^2
a−x2,则
d
V
=
(
a
−
x
2
)
(
2
π
x
)
d
x
dV=\left( a-x^2 \right) \left( 2\pi x \right) dx
dV=(a−x2)(2πx)dx
V
=
∫
0
a
(
a
−
x
2
)
(
2
π
x
)
d
x
=
2
π
∫
0
a
(
a
x
−
x
3
)
d
x
=
2
π
(
a
x
2
2
−
x
4
4
)
∣
0
a
=
π
a
2
2
V=\int_0^{\sqrt{a}}{\left( a-x^2 \right) \left( 2\pi x \right) dx}=2\pi \int_0^{\sqrt{a}}{\left( ax-x^3 \right) dx}=\left. 2\pi \left( \frac{ax^2}{2}-\frac{x^4}{4} \right) \right|_{0}^{\sqrt{a}}=\frac{\pi a^2}{2}
V=∫0a(a−x2)(2πx)dx=2π∫0a(ax−x3)dx=2π(2ax2−4x4)∣∣∣∣0a=2πa2
代值
如果
a
=
1
m
a=1\ m
a=1 m,代入
V
=
π
a
2
2
V=\frac{\pi a^2}{2}
V=2πa2,得
V
=
π
2
m
3
V=\frac{\pi}{2}\ m^3
V=2π m3
如果
a
=
100
c
m
a=100\ cm
a=100 cm,代入
V
=
π
a
2
2
V=\frac{\pi a^2}{2}
V=2πa2,得
V
=
5000
π
c
m
3
V=5000\pi\ cm^3
V=5000π cm3
虽然
1
m
=
100
c
m
1\ m=100\ cm
1 m=100 cm,但是
π
2
m
3
≠
5000
π
c
m
3
\frac{\pi}{2}\ m^3 \neq 5000\pi\ cm^3
2π m3=5000π cm3 ,为什么会出现这种现象呢?到底哪个是正确的呢?
其实两个都是正确的,只不过两个旋转体的体积确实不同,虽然他们高度相同,但它们的宽度不同。
对于
a
=
1
m
a=1\ m
a=1 m,当
y
=
1
m
y=1\ m
y=1 m时
x
=
±
1
m
x=\pm1\ m
x=±1 m,切面如图所示
对于
a
=
100
c
m
a=100\ cm
a=100 cm,当
y
=
100
c
m
y=100\ cm
y=100 cm时
x
=
±
10
c
m
x=\pm10\ cm
x=±10 cm,切面如图所示
可以看到它们虽然高度相同,但宽度是不同的,所以计算出来的体积也不同。