旋转体体积的两种常用求法及单位转换问题

博客讨论了通过数学方法计算由抛物线y=x^2绕y轴旋转形成的旋转体体积。两种方法分别是使用圆盘法(对y积分)和壳层法(对x积分),并给出了详细步骤和公式推导。对于不同半径a,如a=1m和a=100cm,虽然高度相同,但体积不同,因为宽度变化导致。两种方法得出的体积计算结果都是正确的,只是对应不同的几何体。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如图所示,求由 y = x 2 y=x^2 y=x2绕y轴旋转而成的旋转体的体积
在这里插入图片描述

方法一:对y积分(Disks)

在这里插入图片描述
如图所示,盘片的面积为 π x 2 \pi x^2 πx2,厚度为 d y dy dy的盘片的体积为 d V = π x 2 d y dV=\pi x^2dy dV=πx2dy ,则体积 V V V的计算方法如下:
V = ∫ 0 a π x 2 d y V=\int_0^a{\pi x^2dy} V=0aπx2dy
换元 y = x 2 \text{换元}y=x^2 换元y=x2
V = ∫ 0 a π y   d y = π y 2 2 ∣ 0 a = π a 2 2 V=\int_0^a{\pi y\ dy}=\left. \pi \frac{y^2}{2} \right|_{0}^{a}=\pi \frac{a^2}{2} V=0aπy dy=π2y20a=π2a2

方法二:对x积分(Shells)

在这里插入图片描述
x x x为圆柱的半径,圆柱的厚度为 d x dx dx,高为 a − x 2 a-x^2 ax2,则
d V = ( a − x 2 ) ( 2 π x ) d x dV=\left( a-x^2 \right) \left( 2\pi x \right) dx dV=(ax2)(2πx)dx
V = ∫ 0 a ( a − x 2 ) ( 2 π x ) d x = 2 π ∫ 0 a ( a x − x 3 ) d x = 2 π ( a x 2 2 − x 4 4 ) ∣ 0 a = π a 2 2 V=\int_0^{\sqrt{a}}{\left( a-x^2 \right) \left( 2\pi x \right) dx}=2\pi \int_0^{\sqrt{a}}{\left( ax-x^3 \right) dx}=\left. 2\pi \left( \frac{ax^2}{2}-\frac{x^4}{4} \right) \right|_{0}^{\sqrt{a}}=\frac{\pi a^2}{2} V=0a (ax2)(2πx)dx=2π0a (axx3)dx=2π(2ax24x4)0a =2πa2

代值

如果 a = 1   m a=1\ m a=1 m,代入 V = π a 2 2 V=\frac{\pi a^2}{2} V=2πa2,得 V = π 2   m 3 V=\frac{\pi}{2}\ m^3 V=2π m3
如果 a = 100   c m a=100\ cm a=100 cm,代入 V = π a 2 2 V=\frac{\pi a^2}{2} V=2πa2,得 V = 5000 π   c m 3 V=5000\pi\ cm^3 V=5000π cm3
虽然 1   m = 100   c m 1\ m=100\ cm 1 m=100 cm,但是 π 2   m 3 ≠ 5000 π   c m 3 \frac{\pi}{2}\ m^3 \neq 5000\pi\ cm^3 2π m3=5000π cm3 ,为什么会出现这种现象呢?到底哪个是正确的呢?
其实两个都是正确的,只不过两个旋转体的体积确实不同,虽然他们高度相同,但它们的宽度不同。
对于 a = 1   m a=1\ m a=1 m,当 y = 1   m y=1\ m y=1 m x = ± 1   m x=\pm1\ m x=±1 m,切面如图所示
在这里插入图片描述

对于 a = 100   c m a=100\ cm a=100 cm,当 y = 100   c m y=100\ cm y=100 cm x = ± 10   c m x=\pm10\ cm x=±10 cm,切面如图所示
在这里插入图片描述

可以看到它们虽然高度相同,但宽度是不同的,所以计算出来的体积也不同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值