【教程】如何使用YOLO11进行图像分割【附源码】

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

img

引言

在快速发展的计算机视觉领域,You Only Look Once(YOLO)模型一直在推动实时对象检测和分割的边界。从最早的迭代开始,YOLO就改变了机器解释视觉数据的方式,优先考虑速度和准确性。现在,通过YOLOv11,我们看到了性能和功能的重大飞跃,特别是在对象分割方面-这是一项关键技术,不仅可以检测对象,还可以区分图像中的确切边界。

YOLOv11构建了增强的神经架构和优化的分割功能,可提供更准确,更有效的对象描绘。这使得它对于自动驾驶、医学成像和实时监控等应用特别有价值,在这些应用中,了解物体的形状和大小与简单地检测它们一样重要。

对象分割,而不仅仅是检测,是关于理解对象的确切空间属性,使我们能够将图像划分为有意义的区域。YOLOv 11使用先进的卷积层和创新的骨干网络,即使在复杂或混乱的场景中也能提供更清晰、更准确的对象边界。在这篇博客中,我将向您展示YOLOv 11如何改进分割任务,并概述在您自己的项目中实现它的步骤。

使用YOLOv11进行图像分割

步骤1:安装必要的库

pip install opencv-python ultralytics numpy

步骤2:导入库

from ultralytics import YOLO
import random
import cv2
import numpy as np

步骤3:选择模型

model = YOLO("yolo11x-seg.pt")

我们可以比较不同的模型,并权衡各自的优点和缺点。这里我们选择yolov11x-seg.pt。

步骤4:使用YOLOv 11分割图像中的对象

img = cv2.imread("YourImagePath")

# if you want all classes
yolo_classes = list(model.names.values())
classes_ids = [yolo_classes.index(clas) for clas in yolo_classes]
conf = 0.2
results = model.predict(img, conf=conf)
colors = [random.choices(range(256), k=3) for _ in classes_ids]
print(results)
for result in results:
    for mask, box in zip(result.masks.xy, result.boxes):
        points = np.int32([mask])
        color_number = classes_ids.index(int(box.cls[0]))
        cv2.fillPoly(img, points, colors[color_number])

1.加载图像:

  • img = cv2.imread("YourImagePath") 使用OpenCV的cv2.imread()函数从指定路径读取图像。

2.预测准备:

  • yolo_classes = list(model.names.values()) 创建一个由YOLOv11模型识别的类名列表。
  • classes_ids = [yolo_classes.index(clas) for clas in yolo_classes] 创建与这些名称对应的类ID列表。
  • conf = 0.2设置对象检测的置信度阈值。只有置信度得分高于此阈值的预测才会被考虑。

3.运行模型预测:

  • results = model.predict(img, conf=conf) 调用YOLOv11模型的predict()方法对加载的图像进行预测。结果包括检测到的对象、它们的边界框、遮罩(多边形轮廓)、置信度分数和类预测。
  • colors = [random.choices(range(256), k=3) for _ in classes_ids] 生成一个随机颜色列表,每个类一个,用于视觉表示。

4.处理结果和可视化掩模:

  • for循环遍历结果中的每个检测到的对象:
  • mask, box = zip(result.masks.xy, result.boxes) 解压缩对象的遮罩坐标和边界框信息。
  • points = np.int32([mask])将掩码坐标(可能是浮点格式)转换为整数,以便使用OpenCV在图像上绘制。
  • color_number = classes_ids.index(int(box.cls[0])) 根据对象的预测类别确定视觉表示的颜色索引。
  • cv2.fillPoly(img, points, colors[color_number]) 用原始图像上相应的颜色填充由蒙版坐标定义的多边形,有效地创建对象的视觉分割。

步骤5:保存并打印结果图像

cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.imwrite("YourSavePath", img)

img

完整代码

from ultralytics import YOLO
import random
import cv2
import numpy as np

model = YOLO("yolo11x-seg.pt") 

img = cv2.imread("YourImagePath")

# if you want all classes
yolo_classes = list(model.names.values())
classes_ids = [yolo_classes.index(clas) for clas in yolo_classes]

conf = 0.2

results = model.predict(img, conf=conf)
colors = [random.choices(range(256), k=3) for _ in classes_ids]

for result in results:
    for mask, box in zip(result.masks.xy, result.boxes):
        points = np.int32([mask])
        color_number = classes_ids.index(int(box.cls[0]))
        cv2.fillPoly(img, points, colors[color_number])

cv2.imshow("Image", img)
cv2.waitKey(0)

cv2.imwrite("YourSavePath", img)

结论

在本教程中,我们学习了如何在图像和视频中使用YOLOv 11分割对象。如果你觉得这段代码很有帮助,感谢点赞关注!


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值