使用Python进行图像特征提取【2】:SIFT、ORB、纹理特征提取、LBP

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统74.【基于深度学习的水面垃圾智能检测识别系统
75.【基于深度学习的遥感视角船只智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

图像的基本特征提取可以在下面的文章中找到:
《使用Python进行图像特征提取【1】:归一化、边缘检测、图像滤波、直方图均衡》

除了传统的颜色、形状和纹理特征之外,还存在若干先进的技术来从图像中提取特征。在这篇文章中,我们将研究以下方法。

  1. 尺度不变特征变换
  2. ORB(Oriented FAST and Rotated Brief)
  3. Gabor滤波器
  4. 局部二进制模式(LBP)

上述方法通常用于许多图像处理和计算机视觉任务,如对象检测,识别和分类。

1.读取图像

我们将加载与上一篇文章中使用的相同的图像。

import cv2
import matplotlib.pyplot as plt

# Load image
image = cv2.imread('img.jpeg')

# Convert image to RGB (OpenCV loads in BGR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# Display the image
plt.imshow(image_rgb)
plt.axis('off')
plt.show()

img

2.高级形状和关键点提取方法

2.1尺度不变特征变换

它用于识别和描述图像中的局部特征。据说它是尺度和旋转不变的,使其成为对象识别的强大特征提取技术。

# Initialize SIFT detector
sift = cv2.SIFT_create()
# Detect keypoints and descriptors
keypoints, descriptors = sift.detectAndCompute(image_rgb, None)
# Draw keypoints
image_with_keypoints = cv2.drawKeypoints(image_rgb, keypoints, None)

# Display keypoints
plt.imshow(image_with_keypoints)
plt.axis('off')
plt.show()

print(f"Number of keypoints detected: {len(keypoints)}")

img

2.2 ORB(Oriented FAST and Rotated Brief)

ORB是SIFT的一种替代方法,在计算效率很重要的情况下使用。它通常用于实时应用程序。

# Initialize ORB detector
orb = cv2.ORB_create()
# Detect keypoints and descriptors
keypoints_orb, descriptors_orb = orb.detectAndCompute(image_rgb, None)
# Draw keypoints
image_with_keypoints_orb = cv2.drawKeypoints(image_rgb, keypoints_orb, None)

# Display keypoints
plt.imshow(image_with_keypoints_orb)
plt.axis('off')
plt.show()

print(f"Number of ORB keypoints detected: {len(keypoints_orb)}")

img

3.纹理特征提取方法

3.1 Gabor滤波器
Gabor滤波器用于捕获纹理信息。这些滤波器对于捕获空间频率特性至关重要,并用于图像的纹理分析。

import numpy as np
from skimage.filters import gabor

# Apply Gabor filter
frequency = 0.2
gabor_image, gabor_response = gabor(gray_image, frequency=frequency)

# Display Gabor filtered image
plt.imshow(gabor_image, cmap='gray')
plt.title('Gabor Filtered Image')
plt.axis('off')
plt.show()

img

Gabor滤波器是方向性的,因此您可以使用不同的方向来捕获不同方向的纹理图案。

3.2局部二进制模式(LBP)

局部二值模式(LBP)通过将每个像素与其周围的邻居进行比较来捕获图像的局部结构。

from skimage.feature import local_binary_pattern
# Parameters for LBP
radius = 5  # Radius of the circular neighborhood
n_points = 5 * radius  # Number of sampling points
# Apply LBP to the grayscale image
lbp = local_binary_pattern(gray_image, n_points, radius, method='uniform')
# Display the LBP image
plt.imshow(lbp, cmap='gray')
plt.title('Local Binary Patterns')
plt.axis('off')
plt.show()
# Histogram of LBP
hist, _ = np.histogram(lbp.ravel(), bins=np.arange(3, n_points + 3), range=(5, n_points + 2))
# Normalize the histogram
hist = hist.astype('float')
hist /= hist.sum()
print(f"LBP Histogram: {hist}")

img

4.特征提取方法综述

我们在上一篇文章中介绍了传统的特征提取方法,以及颜色、形状和纹理的高级特征提取技术。这里有一个简短的总结:

*颜色直方图:* 捕获图像中颜色的分布。
*轮廓:* 用于提取对象的形状。
*GLCM(灰度共生矩阵):* 提取统计纹理特征。
*SIFT和ORB:* 关键点检测,用于在图像中找到独特和不变的特征。
*Gabor滤波器:* 用于捕获空间频率和纹理信息。
*LBP(Local Binary Patterns):* 一种基于局部像素强度差异的简单有效的纹理分析方法。

结论

特征提取是图像处理和计算机视觉的重要组成部分,它将原始图像数据转换为可用于机器学习模型的有价值的信息或特征数据。在这篇第2部分的文章中,我们已经介绍了更多的方法来提取与颜色,形状和纹理相关的特征。每种方法都有自己的优势,可以根据项目的要求进行组合或单独使用。通过使用这些特征提取技术,您可以构建机器学习模型,这些模型是图像分类,对象检测和其他计算机视觉应用的更准确和更强大的模型。


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值