OpenCV
OpenCV学习实战记录
Limiiiing
研究方向:计算机视觉;专注于计算机视觉模型改进与应用,图像处理,目标定位
展开
-
OpenCV中的轮廓检测cv2.findContours()
轮廓提取的前提,将背景置为黑色,目标为白色(利用二值化或Canny)边缘检测,例如Canny等,利用梯度变化,记录图像中的边缘像素点,返回和源图片一样尺寸和类型的边缘图。轮廓检测,则是将得到的每一个轮廓信息存储下来,记录的是轮廓之间和内部的信息。原创 2024-07-12 13:09:09 · 2563 阅读 · 0 评论 -
OpenCV中的浅拷贝和深拷贝
在数字图像处理中,针对读取到的一张图像,需要反复利用这张图像做各种的变换,以满足我们项目的需求。在这之前,最容易忽略的一点就是图像之间的拷贝问题,其中的浅拷贝和深拷贝不仅影响数据的存储方式,还直接关系到内存管理和数据修改的影响范围。区分深拷贝和浅拷贝主要是为了理解数据是如何在内存中存储和管理的,以及如何在不同的对象或函数之间安全地传递数据。浅拷贝可能更节省内存(因为它不复制数据),但在某些情况下,如果原始数据被意外修改,可能会导致数据不一致的问题。原创 2024-07-10 13:26:19 · 1158 阅读 · 0 评论 -
Opencv中的直方图均衡
cv2.equalizeHist() 是 OpenCV中的一个函数,用于图像的直方图均衡化。直方图均衡化是一种改善图像对比度的方法,特别是当图像的背景和前景都太亮或太暗时,这种方法非常有用。它通过扩展图像的直方图来有效地增加图像的全局对比度,特别是当图像的有用数据的对比度相当接近时。原创 2024-07-08 21:51:55 · 574 阅读 · 0 评论 -
Opencv中的直方图
直方图是图像中像素强度分布的图形表达方式,统计了每一个强度值所具有的像素个数。并可以计算图像中的一个或多个通道的直方图。:该函数返回一个计算出的直方图和一个 bin 的边界值数组(即 ranges 参数的每个维度的边界值)。原创 2024-07-07 22:18:45 · 357 阅读 · 0 评论 -
OpenCV中的cv2.medianBlur()
来说效果很好,因为它不依赖于邻域内那些与典型值差别很大的值。:中值滤波基本思想是用像素点邻域。来代替该像素点的灰度值。原创 2024-07-04 21:16:39 · 222 阅读 · 0 评论 -
OpenCV中的cv2.GaussinaBlur()
高斯滤波计算平滑结果时,只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。在图像中去除高斯噪声方面非常有效。一般是针对灰度图进行高斯滤波,若是彩色图像则会对R、G、B三个通道均作平滑处理。正态分布是一种钟形曲线,越接近中心,取值越大,越远离中心,取值越小。原创 2024-07-04 20:54:51 · 143 阅读 · 0 评论 -
OpenCV中的闭运算、顶帽、黑帽
cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel),其中MORPH_CLOSE是闭运算,先膨胀后腐蚀的过程,它有助于关闭前景物体内部的小孔,或者前景物体上的小黑点,或者连接邻近的物体。MORPH_TOPHAT是礼帽/白帽,是原始图像减去闭运算后的图像。用于检测比周围区域更暗的斑点或区域。MORPH_BLACKHAT是黑帽,是开运算后的图像减去原始图像。这通常用于检测比周围区域更亮的斑点或区域。原创 2024-07-04 16:55:21 · 320 阅读 · 0 评论 -
OpenCV中的开运算
cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel),开运算,先腐蚀后膨胀,通常用于去除小对象(噪声),在保持前景对象大小的同时平滑较大对象的边界。开运算主要用于消除小对象(通常是噪声)和平滑较大对象的边界,同时不明显改变其面积。通过先腐蚀后膨胀的过程,可以去除斑点对象,然后膨胀步骤帮助恢复一些由于腐蚀而减小的对象大小。原创 2024-07-04 12:29:49 · 301 阅读 · 0 评论 -
OpenCV中的cv2.dilate()
膨胀操作通常用于填补前景对象中的小洞、连接邻近的对象等。然而,它也可能导致前景对象在视觉上变大或与其他对象合并。膨胀是图像形态学操作的一种,与腐蚀操作相反,它用于增大图像中亮区域(通常是前景对象)的大小。原创 2024-07-04 12:14:21 · 609 阅读 · 0 评论 -
OpenCV中的cv2.erode()
腐蚀是一种图像形态学操作,用于减小图像中亮区域(通常是前景对象)的大小。它通过应用一个结构元素(通常称为卷积核或核)来实现,该结构元素在图像上滑动,并仅当结构元素下的所有像素都满足特定条件时(通常是所有像素都是前景像素),才保留结构元素中心位置的像素。、将前景对象的边界向内收缩等。然而,它也可能导致前景对象在视觉上变小或断裂。原创 2024-07-04 12:06:50 · 569 阅读 · 0 评论