YOLOv10训练自己的数据集(从代码下载到实例测试)


前言

提示:本文是YOLOv10训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看我的往期博客:在Windows10上配置CUDA环境教程

YOLOv10是YOLO(You Only Look Once)系列的最新版本,由清华大学的研究人员在Ultralytics Python包的基础上开发完成,并于2024年5月发布。作为一种实时端到端目标检测器,YOLOv10在性能、效率和精度方面均取得了显著提升,是计算机视觉领域的一项重要进展。

在这里插入图片描述

代码地址:https://github.com/THU-MIG/yolov10
论文地址:https://arxiv.org/pdf/2405.14458

在这里插入图片描述


一、YOLOv10简介

主要特点

  1. 无NMS的一致双分配训练策略:
    • YOLOv10引入了无NMS的一致双分配训练策略,结合了一对多和一对一分配策略的优势。在训练过程中,模型利用一对多分配的丰富监督信号,而在推理过程中则使用一对一分配的预测结果,从而实现无NMS的高效推理。
    • 一致匹配度量:为确保两个分支的预测感知匹配,YOLOv10提出了一致匹配度量,通过调整匹配度量参数,使得一对一和一对多分配的监督信号一致,减少了训练期间的监督差距,提升了模型的预测质量。
  2. 效率-精度驱动的模型设计:
    • YOLOv10在模型设计上采用了多种技术来降低计算成本,同时保持较高的检测性能。这包括轻量化分类头、空间-通道解耦下采样、基于秩的块设计、大核卷积和部分自注意力模块等。
    • 轻量化分类头:通过分析分类误差和回归误差的影响,YOLOv10在不显著影响性能的情况下,减少了分类头的计算开销。
    • 空间-通道解耦下采样:将空间缩减和通道增加操作解耦,实现更高效的下采样,最大限度地提高了下采样过程中的信息保留率。
    • 基于秩的块设计:根据各阶段的内在秩来适应块设计,降低冗余,提高效率。YOLOv10提出了一种紧凑的反向块(CIB)结构,并设计了一种秩引导的块分配策略。
  3. 大核卷积和部分自注意力模块:
    • YOLOv10采用大核深度卷积来扩大感受野和增强模型能力,特别是在深度阶段利用了CIB中的大核深度卷积。
    • 部分自注意力模块的引入解决了自注意力在视觉任务中出现的高计算复杂度和内存占用问题,增强了模型的全局建模能力,提高了检测准确性和鲁棒性。

二、环境搭建

在配置好CUDA环境,并且获取到YOLOv10源码后,建议新建一个虚拟环境专门用于YOLOv10模型的训练。将YOLOv10加载到环境后,安装剩余的包。requirements.txt 中包含了运行所需的包和版本,利用以下命令批量安装:

pip install -r requirements.txt

三、构建数据集

YOLOv10模型的训练需要原图像及对应的YOLO格式标签,还未制作标签的可以参考我这篇文章:LabelImg安装与使用教程

我的原始数据存放在根目录的data文件夹(新建的)下,里面包含图像和标签。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
标签内的格式如下:
在这里插入图片描述
具体格式为 class_id x y w h,分别代表物体类别,标记框中心点的横纵坐标(x, y),标记框宽高的大小(w, h),且都是归一化后的值,图片左上角为坐标原点。

将原本数据集按照8:1:1的比例划分成训练集、验证集和测试集三类,划分代码如下。

# 将图片和标注数据按比例切分为 训练集和测试集
import shutil
import random
import os
 
# 原始路径
image_original_path = "data/images/"
label_original_path = "data/labels/"
 
cur_path = os.getcwd()
# 训练集路径
train_image_path = os.path.join(cur_path, "datasets/images/train/")
train_label_path = os.path.join(cur_path, "datasets/labels/train/")
 
# 验证集路径
val_image_path = os.path.join(cur_path, "datasets/images/val/")
val_label_path = os.path.join(cur_path, "datasets/labels/val/")
 
# 测试集路径
test_image_path = os.path.join(cur_path, "datasets/images/test/")
test_label_path = os.path.join(cur_path, "datasets/labels/test/")
 
# 训练集目录
list_train = os.path.join(cur_path, "datasets/train.txt")
list_val = os.path.join(cur_path, "datasets/val.txt")
list_test = os.path.join(cur_path, "datasets/test.txt")
 
train_percent = 0.8
val_percent = 0.1
test_percent = 0.1
 
 
def del_file(path):
    for i in os.listdir(path):
        file_data = path + "\\" + i
        os.remove(file_data)
 
 
def mkdir():
    if not os.path.exists(train_image_path):
        os.makedirs(train_image_path)
    else:
        del_file(train_image_path)
    if not os.path.exists(train_label_path):
        os.makedirs(train_label_path)
    else:
        del_file(train_label_path)
 
    if not os.path.exists(val_image_path):
        os.makedirs(val_image_path)
    else:
        del_file(val_image_path)
    if not os.path.exists(val_label_path):
        os.makedirs(val_label_path)
    else:
        del_file(val_label_path)
 
    if not os.path.exists(test_image_path):
        os.makedirs(test_image_path)
    else:
        del_file(test_image_path)
    if not os.path.exists(test_label_path):
        os.makedirs(test_label_path)
    else:
        del_file(test_label_path)
 
 
def clearfile():
    if os.path.exists(list_train):
        os.remove(list_train)
    if os.path.exists(list_val):
        os.remove(list_val)
    if os.path.exists(list_test):
        os.remove(list_test)
 
 
def main():
    mkdir()
    clearfile()
 
    file_train = open(list_train, 'w')
    file_val = open(list_val, 'w')
    file_test = open(list_test, 'w')
 
    total_txt = os.listdir(label_original_path)
    num_txt = len(total_txt)
    list_all_txt = range(num_txt)
 
    num_train = int(num_txt * train_percent)
    num_val = int(num_txt * val_percent)
    num_test = num_txt - num_train - num_val
 
    train = random.sample(list_all_txt, num_train)
    # train从list_all_txt取出num_train个元素
    # 所以list_all_txt列表只剩下了这些元素
    val_test = [i for i in list_all_txt if not i in train]
    # 再从val_test取出num_val个元素,val_test剩下的元素就是test
    val = random.sample(val_test, num_val)
 
    print("训练集数目:{}, 验证集数目:{}, 测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
    for i in list_all_txt:
        name = total_txt[i][:-4]
 
        srcImage = image_original_path + name + '.jpg'
        srcLabel = label_original_path + name + ".txt"
 
        if i in train:
            dst_train_Image = train_image_path + name + '.jpg'
            dst_train_Label = train_label_path + name + '.txt'
            shutil.copyfile(srcImage, dst_train_Image)
            shutil.copyfile(srcLabel, dst_train_Label)
            file_train.write(dst_train_Image + '\n')
        elif i in val:
            dst_val_Image = val_image_path + name + '.jpg'
            dst_val_Label = val_label_path + name + '.txt'
            shutil.copyfile(srcImage, dst_val_Image)
            shutil.copyfile(srcLabel, dst_val_Label)
            file_val.write(dst_val_Image + '\n')
        else:
            dst_test_Image = test_image_path + name + '.jpg'
            dst_test_Label = test_label_path + name + '.txt'
            shutil.copyfile(srcImage, dst_test_Image)
            shutil.copyfile(srcLabel, dst_test_Label)
            file_test.write(dst_test_Image + '\n')
 
    file_train.close()
    file_val.close()
    file_test.close()

 
if __name__ == "__main__":
    main()

划分完成后将会在datasets文件夹下生成划分好的文件,其中images为划分后的图像文件,里面包含用于train、val、test的图像,已经划分完成;labels文件夹中包含划分后的标签文件,已经划分完成,里面包含用于train、val、test的标签;train.tet、val.txt、test.txt中记录了各自的图像路径。

在这里插入图片描述

在这里插入图片描述
在训练过程中,也是主要使用这三个txt文件进行数据的索引。

四、修改配置文件

①数据集文件配置

数据集划分完成后,在根目录文件夹下新建data.yaml文件,替代coco.yaml。用于指明数据集路径和类别,我这边只有一个类别,只留了一个,多类别的在name内加上类别名即可。data.yaml中的内容为:

path: ../datasets  # 数据集所在路径
train: train.txt  # 数据集路径下的train.txt
val: val.txt  # 数据集路径下的val.txt
test: test.txt  # 数据集路径下的test.txt

# Classes
names:
  0: wave

在这里插入图片描述

②模型文件配置

在ultralytics/cfg/models/v10文件夹下存放的是YOLOv10的各个版本的模型配置文件,检测的类别是coco数据的80类。在训练自己数据集的时候,只需要将其中的类别数修改成自己的大小。在根目录文件夹下新建yolov10n-test.yaml文件,此处以yolov10n.yaml文件中的模型为例,将其中的内容复制到yolov10n-test.yaml文件中 ,并将nc: 1 # number of classes 修改类别数` 修改成自己的类别数,如下:
在这里插入图片描述

在这里插入图片描述

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] 

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 1, PSA, [1024]] # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 19 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


修改完成后,模型文件就配置好啦。

③训练文件配置

在进行模型训练之前,需要到官网下载预训练权重,权重地址为:https://github.com/THU-MIG/yolov10/releases
在这里插入图片描述

根据所选择的模型下载相应的权重,我这边下载的是yolov10n.pt,放在了根目录weights/yolov10n.pt路径下。

YOLOv10的超参数配置在ultralytics/cfg文件夹下的default.yaml文件中

在这里插入图片描述

在模型训练中,比较重要的参数是weights、data、epochs、batch、imgsz、device以及workers。

  • weight是配置预训练权重的路径,可以指定模型的yaml文件或pt文件。

  • data是配置数据集文件的路径,用于指定自己的数据集yaml文件。

  • epochs指训练的轮次,默认是100次,只要模型能收敛即可。

  • batch是表示一次性将多少张图片放在一起训练,越大训练的越快,如果设置的太大会报OOM错误,我这边在default中设置16,表示一次训练16张图像。设置的大小为2的幂次,1为2的0次,16为2的4次。

  • imgsz表示送入训练的图像大小,会统一进行缩放。要求是32的整数倍,尽量和图像本身大小一致。

  • device指训练运行的设备。该参数指定了模型训练所使用的设备,例如使用 GPU 运行可以指定为device=0,或者使用多个 GPU 运行可以指定为 device=0,1,2,3,如果没有可用的 GPU,可以指定为 device=cpu 使用 CPU 进行训练。

  • workers是指数据装载时cpu所使用的线程数,默认为8,过高时会报错:[WinError 1455] 页面文件太小,无法完成操作,此时就只能将workers调成0了。

模型训练的相关基本参数就是这些啦,其余的参数可以等到后期训练完成进行调参时再详细了解。

五、模型训练和测试

模型训练

由于YOLOv10未提供单独的训练程序用于训练,而只是使用命令行进行训练,此处提供两种训练方法,一是在终端使用命令行进行训练;二是新建训练程序,配置参数进行训练。

(1)、在终端使用命令行进行训练

打开终端或新建终端后,输入命令:

yolo detect train data=data.yaml model=yolov10n-test.yaml epochs=300 batch=16 imgsz=640 device=0 workers=8

(2)、新建训练程序,配置参数进行训练

在项目根目录下新建train.py文件,输入以下内容后运行当前文件即可开始训练。

from ultralytics import YOLOv10
 
# 加载模型
model = YOLOv10("yolov10n-test.yaml")  # 模型结构
model = YOLOv10("weights/yolov10n.pt")  # 加载预训练权重
if __name__ == '__main__':
    model.train(data="data.yaml", imgsz=640, batch=32, epochs=300, workers=8)  # 训练模型

在这里插入图片描述
在这里插入图片描述

训练完成后,将会在runs/detect/train/weights文件夹下存放训练后的权重文件。

模型测试

(1)、在终端使用命令行进行测试

打开终端或新建终端后,输入命令:

yolo detect val data=data.yaml model=runs/detect/train/weights/best.pt batch=16 imgsz=640 split=test device=0 workers=8

(2)、新建训练程序,配置参数进行训练

在项目根目录下新建val.py文件,输入以下内容后运行当前文件即可开始测试。

from ultralytics import YOLOv10
 
def main():
    # 加载模型,split='test'利用测试集进行测试
    model = YOLOv10(r"runs/detect/train/weights/best.pt")
    model.val(data="data.yaml", split='test', imgsz=640, batch=16, device=0, workers=8)  #模型验证
if __name__ == "__main__":
    main()

在这里插入图片描述


总结

以上就是YOLOv10训练自己数据集的全部过程啦,欢迎大家在评论区交流~

  • 48
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
YOLO(You Only Look Once)是一种实时目标检测算法,YOLOv10YOLO系列的最新版本之一,它在前几代的基础上进行了优化和改进。训练自己的数据集是使用YOLO进行目标检测任务的关键步骤,下面是一些关键步骤: 1. 数据收集:首先,你需要一个包含目标物体及其对应标注信息(边界框坐标、类别标签)的数据集数据集应包括不同角度、光照和背景的图像,以提高模型的泛化能力。 2. 数据预处理:对图片进行标准化,如调整大小(通常保持网络输入尺寸的一致性),转换为RGB格式,并将像素值缩放到特定的范围(例如[0, 1]或[-1, 1])。 3. 创建标注文件:对于YOLO,需要的是`.txt`格式的标注文件,每个条目包含图像文件名、类别的ID、以及对应的框信息(左上角和右下角坐标)。 4. 数据划分:将数据集划分为训练集、验证集和测试集,通常比例可能为70%、15%和15%,以便在训练过程中进行模型选择和性能评估。 5. 配置文件:准备YOLOv10训练配置文件,其中定义了训练参数、优化器、损失函数、学习率策略等。 6. 模型训练:使用深度学习框架(如TensorFlow或PyTorch)加载预训练YOLOv10模型,然后使用自定义数据集进行训练训练过程可能需要一段时间,取决于数据量、GPU性能和设置的超参数。 7. 模型评估与调整:训练完成后,用验证集评估模型性能。如果效果不理想,可能需要调整网络结构、优化器参数或训练参数,然后重新训练
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值