自适应阈值canny边缘检测(功能实现)

学习记录…

1 概述

canny边缘检测是一种特别常用且性能优秀的边缘检测算法,相比于普通的边缘检测算法,canny获得的边缘较细且具有连续的边缘轮廓,为之后的一系列图像处理带来极大的便利。

canny边缘检测也是基于梯度图像的,通常在其局部最大值附近会包含一些宽脊,为了细化这些宽脊采用的方向就是非极大值抑制——梯度的本意是一个向量(矢量),函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模——即梯度图像像素值),梯度的方向是与边缘的方向垂直的,那么在一个3x3范围内,可以将梯度的方向进行分区:

在这里插入图片描述
对于每个像素点,如果 A ( i , j ) A(i,j) A(i,j)的梯度幅值比其梯度方向上相邻2个像素点 A 1 A1 A1 A 2 A2 A2的梯度幅值大,该点标记为候选边缘点。

梯度方向(角度)在不同的分区可以分别映射为水平方向(垂直边缘)、+45方向、垂直方向(水平边缘)、-45方向。

那么在确定某一点梯度方向所属分区所映射到的方向之后,就将该点梯度幅值与方向上的梯度幅值进行比较,若该点梯度幅值均大于方向上点的梯度幅值则保留,否则令为0。

改进

在canny边缘检测中,还有一个重要的步骤:双阈值的滞后阈值处理,一个高阈值TH和一个低阈值TL,比例在2:1到3:1内,(至于为什么会这样真不明白)这就带来了canny边缘检测的一个很大的缺点,那就是需要输入阈值参数,基于此,很多完全自适应阈值的canny算法诞生,在这里仅提供一种较简单和实用的思路——将经过非极大值抑制后的梯度图像利用Otsu算法算出一个阈值,将其作为一个高阈值TH,高阈值的一半作为低阈值TL

2 算法步骤小结

  1. 使用一个高斯滤波器平滑输入图像。
  2. 计算梯度幅值图像和角度图像。
  3. 对梯度幅值图像进行非极大值抑制。
  4. 将非极大值抑制获得的图像利用Otsu算法确定双阈值。
  5. 使用双阈值处理和连通域分析来检测与连接边缘。

具体内容可参照冈萨雷斯《数字图像处理》

具体代码如下

//确定一个点的坐标是否在图像内
bool checkInRang(int r, int c, int rows, int cols) {
	if (r >= 0 && r < rows && c >= 0 && c < cols)
		return true;
	else
		return false;
}

//从确定边缘点出发,延长边缘
void EdgePoint_Trace(cv::Mat& edgeMag_noMaxsup, cv::Mat& edge, unsigned TL, int r, int c, int rows, int cols)
{
	//如果边缘图未被标记
	if (edge.at<uchar>(r, c) == 0)
	{
		edge.at<uchar>(r, c) = 255;
		for (int i = -1; i <= 1; ++i)
		{
			for (int j = -1; j <= 1; ++j)
			{
				float mag = edgeMag_noMaxsup.at<float>(r + i, c + j);
				if (checkInRang(r + i, c + j, rows, cols) && mag >= TL)
					EdgePoint_Trace(edgeMag_noMaxsup, edge, TL, r + i, c + j, rows, cols);
			}
		}
	}
}

/********************************mian函数入口***************************************/
int main()
{
	string path = "F:\\NoteImage\\lena.jpg";

	Mat SrcImage = imread(path);
	if (!SrcImage.data) {
		std::cout << "Could not open or find the image" << std::endl;
		return -1;
	}

	cv::Mat grayImage, cannyImage;
	cvtColor(SrcImage, grayImage, COLOR_BGR2GRAY);
	//使图像连续并可导
	GaussianBlur(grayImage, grayImage, Size(3, 3), 0, 0);

	cv::Mat gx, gy;
	cv::Mat mag, angle;

	Sobel(grayImage, gx, CV_32F, 1, 0, 3);
	Sobel(grayImage, gy, CV_32F, 0, 1, 3);
	//计算梯度幅值和梯度的方向(角度)
	cv::cartToPolar(gx, gy, mag, angle, true);
	//定义全黑非极大值抑制图像
	cv::Mat Non_maxImage = cv::Mat::zeros(grayImage.size(), CV_32FC1);
	int height = grayImage.rows;
	int width = grayImage.cols;
	//获得非极大值抑制图像
	for (int i = 1; i < height - 1; ++i)
	{
		for (int j = 1; j < width - 1; ++j)
		{
			float g_angle = angle.at<float>(i, j);
			float K_mag = mag.at<float>(i, j);
			//梯度方向在垂直方向
			if ((g_angle <= 112.5 && g_angle > 67.5) || (g_angle <= 292.5 && g_angle > 247.5))
			{
				if (K_mag >= mag.at<float>(i - 1, j) && K_mag >= mag.at<float>(i + 1, j))
					Non_maxImage.at<float>(i, j) = K_mag;
			}
			//梯度方向在水平方向
			else if (g_angle <= 22.5 || g_angle > 337.5 || (g_angle <= 202.5 && g_angle > 157.5))
			{
				if (K_mag >= mag.at<float>(i, j - 1) && K_mag >= mag.at<float>(i, j + 1))
					Non_maxImage.at<float>(i, j) = K_mag;
			}
			//梯度方向在+45方向
			else if ((g_angle <= 67.5 && g_angle > 22.5) || (g_angle <= 247.5 && g_angle > 202.5))
			{
				if (K_mag >= mag.at<float>(i - 1, j - 1) && K_mag >= mag.at<float>(i + 1, j + 1))		
					Non_maxImage.at<float>(i, j) = K_mag;
			}
			//梯度方向在-45方向
			else if ((g_angle <= 337.5 && g_angle > 292.5) || (g_angle <= 157.5 && g_angle > 112.5))
			{
				if (K_mag >= mag.at<float>(i + 1, j - 1) && K_mag >= mag.at<float>(i - 1, j + 1))		
					Non_maxImage.at<float>(i, j) = K_mag;
			}
		}
	}
	//双阈值处理--根据Otsu算出的阈值确定为高阈值,取高阈值的一半记为低阈值
	unsigned TH = Otsu_threshold(Non_maxImage);
	unsigned TL = TH * 0.5;
	cv::Mat My_cannyImage = cv::Mat::zeros(grayImage.size(), grayImage.type());

	for (int i = 1; i < height - 1; ++i)
	{
		for (int j = 1; j < width - 1; ++j)
		{
			float K_mag = Non_maxImage.at<float>(i, j);
			//大于高阈值确定为边缘点
			if (K_mag > TH)
				EdgePoint_Trace(Non_maxImage, My_cannyImage, TL, i, j, height, width);
			else if (K_mag < TL)
				My_cannyImage.at<uchar>(i, j) = 0;
		}
	}

	//和OpenCV自带函数做对比
	Canny(grayImage, cannyImage, TH, TL, 3, true);


	imshow("src", My_cannyImage);
	cv::waitKey(0);
	return 0;

双阈值边缘连接处理要点采用了大佬的方法:canny算子边缘检测原理与实现

试验图例:

在这里插入图片描述
2022/5/11更新

以上采用递归的方式去实现,代码简洁,但是当图像太大,在某些编译环境下,会有栈溢出的风险,其次算法只需要判断当前梯度方向状态是水平、垂直还是对角,并不需要实际去计算实际的梯度角,基于此,通过阅读源码和查找资料,做出了一些改进。

算法思路在上文中已有简要说明,下面直接给出代码:

//5×5高斯滤波
cv::Mat _gaussian_filter(const cv::Mat& mat) 
{
	cv::Mat matDouble;
	mat.convertTo(matDouble, CV_64FC1);
	cv::Mat kernel = (cv::Mat_<double>(5, 5) <<
		2, 4, 5, 4, 2,
		4, 9, 12, 9, 4,
		5, 12, 15, 12, 5,
		4, 9, 12, 9, 4,
		2, 4, 5, 4, 2);
	kernel = kernel / 159;
	cv::Mat resDouble;
	cv::filter2D(matDouble, resDouble, -1, kernel, cv::Point(-1, -1), 0.0, cv::BORDER_REFLECT101);
	cv::Mat res;
	resDouble.convertTo(res, CV_8UC1);
	return res;
}


//对滤波后的图利用sobel计算梯度,通过梯度角的tan值与tan22.5进行一些比较获取梯度角所属分区
//angle = 0-> horizontal, 1 -> vertical, 2 -> diagonal
void _sobel_gradient(const cv::Mat& mat, cv::Mat& dx, cv::Mat& dy, cv::Mat& magnitudes, cv::Mat& angles,
	int apertureSize, bool L2gradient)
{
	CV_Assert(apertureSize == 3 || apertureSize == 5);

	double scale = 1.0;
	cv::Sobel(mat, dx, CV_16S, 1, 0, apertureSize, scale, cv::BORDER_REPLICATE);
	cv::Sobel(mat, dy, CV_16S, 0, 1, apertureSize, scale, cv::BORDER_REPLICATE);

	const int TAN225 = 13573;			//tan22.5 * 2^15(2 << 15)

	angles = cv::Mat(mat.size(), CV_8UC1);  // 0-> horizontal, 1 -> vertical, 2 -> diagonal
	magnitudes = cv::Mat::zeros(mat.rows + 2, mat.cols + 2, CV_32SC1);
	cv::Mat magROI = cv::Mat(magnitudes, cv::Rect(1, 1, mat.cols, mat.rows));

	for (int i = 0; i < mat.rows; i++)
	{
		for (int j = 0; j < mat.cols; j++)
		{
			short xs = dx.ptr<short>(i)[j];
			short ys = dy.ptr<short>(i)[j];
			int x = (int)std::abs(xs);
			int y = (int)std::abs(ys) << 15;

			if (L2gradient) {
				//magROI.ptr<int>(i)[j] = int(xs) * xs + int(ys) * ys;
				magROI.ptr<int>(i)[j] = (int)std::sqrt(xs * xs + ys * ys);
			}
			else {
				magROI.ptr<int>(i)[j] = std::abs(int(xs)) + std::abs(int(ys));
			}

			int tan225x = x * TAN225;
			if (y < tan225x) {  // horizontal
				angles.ptr<uchar>(i)[j] = 0;
			}
			else
			{
				int tan675x = tan225x + (x << 16);
				if (y > tan675x) {  // vertical
					angles.ptr<uchar>(i)[j] = 1;
				}
				else {  // diagonal
					angles.ptr<uchar>(i)[j] = 2;
				}
			}
		}
	}
}


//根据angles将梯度图进行非极大值抑制得到NMSImage,对其利用OTSU算法计算阈值,
//计算得到的阈值为高阈值high,低阈值取0.5*high
void _calculate_hysteresis_threshold_value(const cv::Mat& dx, const cv::Mat& dy, const cv::Mat& magnitudes,
	const cv::Mat& angles, cv::Mat& NMSImage, int& low, int& high)
{
	NMSImage = cv::Mat::zeros(magnitudes.size(), magnitudes.type());		//CV_32SC1

	for (int i = 0; i < dx.rows; ++i)
	{
		int r = i + 1;
		for (int j = 0; j < dx.cols; ++j)
		{
			int c = j + 1;
			int m = magnitudes.ptr<int>(r)[c];
			uchar angle = angles.ptr<uchar>(i)[j];
			
			if (angle == 0)			//horizontal
			{	
				if (m > magnitudes.ptr<int>(r)[c - 1] && m >= magnitudes.ptr<int>(r)[c + 1])
					NMSImage.ptr<int>(r)[c] = m;
			}
			else if (angle == 1)	//vertical
			{
				if (m > magnitudes.ptr<int>(r - 1)[c] && m >= magnitudes.ptr<int>(r + 1)[c])
					NMSImage.ptr<int>(r)[c] = m;
			}
			else if (angle == 2)	//diagonal
			{
				short xs = dx.ptr<short>(i)[j];
				short ys = dy.ptr<short>(i)[j];
				if ((xs > 0 && ys > 0) || (xs < 0 && ys < 0))
				{	//45 degree
					if (m > magnitudes.ptr<int>(r - 1)[c - 1] && m > magnitudes.ptr<int>(r + 1)[c + 1])
						NMSImage.ptr<int>(r)[c] = m;
				}
				else
				{	//135 degree
					if (m > magnitudes.ptr<int>(r - 1)[c + 1] && m > magnitudes.ptr<int>(r + 1)[c - 1])
						NMSImage.ptr<int>(r)[c] = m;
				}
			}
		}
	}

	//利用Otsu对非极大值抑制图像进行处理,将计算得到的阈值作为高阈值high, 低阈值取高阈值的0.5倍
	cv::normalize(NMSImage, NMSImage, 0, 255, cv::NORM_MINMAX);
	NMSImage.convertTo(NMSImage, CV_8UC1);

	cv::Mat temp;
	high = (int)cv::threshold(NMSImage, temp, 0, 255, cv::THRESH_OTSU);
	low = (int)(0.5 * high);
}


//对非极大值抑制后的图根据高低阈值进行标记,当当前像素小于low,则标记为1,当当前像素大于low且大于high,则标记为2
//当大于low小于high时标记为0,并将标记为2的像素坐标压入队列
void _non_maximum_suppression(const cv::Mat& NMSImage, cv::Mat& map, std::deque<int>& mapIndicesX,
	std::deque<int>& mapIndicesY, int low, int high)
{
	// 0 -> the pixel may be edge
	// 1 -> the pixel is not edge
	// 2 -> the pixel is edge
	map = cv::Mat::ones(NMSImage.size(), CV_8UC1);

	for (int i = 0; i < NMSImage.rows; ++i)
	{
		for (int j = 0; j < NMSImage.cols; ++j)
		{
			int m = NMSImage.ptr<uchar>(i)[j];				//nms -> CV_8UC1
			if (m > low)
			{
				if (m > high)
				{
					map.ptr<uchar>(i)[j] = 2;
					mapIndicesX.push_back(j);
					mapIndicesY.push_back(i);
				}
				else
					map.ptr<uchar>(i)[j] = 0;
			}
		}
	}
}


//双阈值滞后处理:根据队列中的像素坐标,进行8领域边缘点寻找,即在map中与2相连的0均认作为边缘点
void _hysteresis_thresholding(std::deque<int>& mapIndicesX, std::deque<int>& mapIndicesY, cv::Mat& map)
{
	while (!mapIndicesX.empty())
	{
		int r = mapIndicesY.back();
		int c = mapIndicesX.back();
		//获取到边缘点之后要将其弹出
		mapIndicesX.pop_back();
		mapIndicesY.pop_back();

		// top left
		if (map.ptr<uchar>(r - 1)[c - 1] == 0) 
		{
			mapIndicesX.push_back(c - 1);
			mapIndicesY.push_back(r - 1);
			map.ptr<uchar>(r - 1)[c - 1] = 2;
		}
		// top
		if (map.ptr<uchar>(r - 1)[c] == 0) 
		{
			mapIndicesX.push_back(c);
			mapIndicesY.push_back(r - 1);
			map.ptr<uchar>(r - 1)[c] = 2;
		}
		// top right
		if (map.ptr<uchar>(r - 1)[c + 1] == 0) 
		{
			mapIndicesX.push_back(c + 1);
			mapIndicesY.push_back(r - 1);
			map.ptr<uchar>(r - 1)[c + 1] = 2;
		}
		// left
		if (map.ptr<uchar>(r)[c - 1] == 0) 
		{
			mapIndicesX.push_back(c - 1);
			mapIndicesY.push_back(r);
			map.ptr<uchar>(r)[c - 1] = 2;
		}
		// right
		if (map.ptr<uchar>(r)[c + 1] == 0) 
		{
			mapIndicesX.push_back(c + 1);
			mapIndicesY.push_back(r);
			map.ptr<uchar>(r)[c + 1] = 2;
		}
		// bottom left
		if (map.ptr<uchar>(r + 1)[c - 1] == 0) 
		{
			mapIndicesX.push_back(c - 1);
			mapIndicesY.push_back(r + 1);
			map.ptr<uchar>(r + 1)[c - 1] = 2;
		}
		// bottom
		if (map.ptr<uchar>(r + 1)[c] == 0) 
		{
			mapIndicesX.push_back(c);
			mapIndicesY.push_back(r + 1);
			map.ptr<uchar>(r + 1)[c] = 2;
		}
		// bottom right
		if (map.ptr<uchar>(r + 1)[c + 1] == 0) 
		{
			mapIndicesX.push_back(c + 1);
			mapIndicesY.push_back(r + 1);
			map.ptr<uchar>(r + 1)[c + 1] = 2;
		}
	}
}


cv::Mat _get_canny_result(const cv::Mat& map)
{
	cv::Mat dst(map.rows - 2, map.cols - 2, CV_8UC1);
	for (int i = 0; i < dst.rows; i++) {
		for (int j = 0; j < dst.cols; j++) {
			dst.ptr<uchar>(i)[j] = (map.ptr<uchar>(i + 1)[j + 1] == 2 ? 255 : 0);
		}
	}
	return dst;
}

/*--------函数封装---------*/
//自适应阈值canny plus版本
cv::Mat Adaptive_Canny(const cv::Mat& src, int apertureSize, bool L2gradient)
{
	CV_Assert(src.type() == CV_8UC1);
	CV_Assert(apertureSize == 3 || apertureSize == 5);

	cv::Mat gaussianSrc = _gaussian_filter(src);

	cv::Mat dx, dy, magnitudes, angles;
	_sobel_gradient(gaussianSrc, dx, dy, magnitudes, angles, apertureSize, L2gradient);

	//非极大值抑制计算高低阈值
	int low, high;
	cv::Mat NMSImage;
	_calculate_hysteresis_threshold_value(dx, dy, magnitudes, angles, NMSImage, low, high);

	cv::Mat map;
	std::deque<int> mapIndicesX, mapIndicesY;
	_non_maximum_suppression(NMSImage, map, mapIndicesX, mapIndicesY, low, high);

	_hysteresis_thresholding(mapIndicesX, mapIndicesY, map);
	cv::Mat dst = _get_canny_result(map);

	return dst;
}

//*****************************测试代码******************************//

int main()
{
	std::string path = "F:\\NoteImage\\手掌2.2.jpg";

	cv::Mat src = cv::imread(path, cv::IMREAD_GRAYSCALE);
	if (!src.data) {
		std::cout << "Could not open or find the image" << std::endl;
		return -1;
	}

	cv::Mat gaussianSrc = _gaussian_filter(src);

	int apertureSize = 3;
	bool L2gradient = true;
	cv::Mat dx, dy, magnitudes, angles;
	_sobel_gradient(gaussianSrc, dx, dy, magnitudes, angles, apertureSize, L2gradient);

	//非极大值抑制计算高低阈值
	int low, high;
	cv::Mat NMSImage;
	_calculate_hysteresis_threshold_value(dx, dy, magnitudes, angles, NMSImage, low, high);

	cv::Mat map;
	std::deque<int> mapIndicesX, mapIndicesY;
	_non_maximum_suppression(NMSImage, map, mapIndicesX, mapIndicesY, low, high);

	_hysteresis_thresholding(mapIndicesX, mapIndicesY, map);
	cv::Mat dst = _get_canny_result(map);

	//利用计算出来的low和high传入opencv Canny进行对比
	cv::Mat opencvCanny;
	cv::Canny(gaussianSrc, opencvCanny, low, high, apertureSize, L2gradient);

	cv::imshow("dst", dst);
	cv::imshow("opencvCanny", opencvCanny);

	cv::waitKey(0);
	return 0;
}

结果分析:

 原图

原图
试验结果
在这里插入图片描述
很神奇的是,将计算得到的阈值传入cv::canny(),与本文算法获得的结果图比较,有很大的差异,至于为什么会出现这个差异,在算法逻辑上想了很久都没有找到问题,但这个差异对我来说有好的一面:对于示例图,手掌是我们想要的前景图,在边缘分析中应该尽可能的去除背景成分。很显然,基于以上假设,本文算法达到了更好的效果,不仅提取到了完整的前景细腻边缘,还去除了一些背景边缘,误打误撞吧,这在某些场景下,还是挺有用的。


参考资料:基于改进Canny算子的锂电池极片表面缺陷检测
参考代码: B站大佬up主

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值