康托悖论

用“康托悖论”来理解集合的基础知识。

集合基本概念:

  1. 集合的基数:
    集合中元素的个数,也即集合的大小,通常表示为 ∣ A ∣ |A| A.
  2. 集族:
    以集合为元素的集合,包括空集。
  3. 幂集:
    集合的所有子集所构成的集族,通常记作 2 S , 2 S = { A ∣ A ⊆ S } 2^S, 2^S=\{A|A \subseteq S\} 2S,2S={AAS}.

例如:
集合 A = { 1 , 2 , 3 } A=\{1,2,3\} A={1,2,3} A A A 的基数为 ∣ A ∣ = 3 |A|=3 A=3
B = { { ∅ } , { A } } B=\{\{\empty\},\{A\}\} B={{},{A}} ,则 B B B 为包含两个元素的集族;
A A A 的幂集为 P ( A ) = { { } , { a } , { b } , { c } , { a , b } , { a , c } , { b , c } , { a , b , c } } P(A)=\{\{\},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} P(A)={{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.

康托悖论:

如果同时考虑以下两个命题,则产生逻辑上的矛盾:
命题 1:如果考虑所有集合所构成的集族 Λ \Lambda Λ,设其基数为 λ \lambda λ,则 Λ \Lambda Λ 应为最大集合,其基数 λ \lambda λ 为最大基数。
命题 2:任意集合 Λ \Lambda Λ 的幂集 2 Λ 2^{\Lambda} 2Λ 的基数都比该集合的基数大。[康拓定理]

明显发现,康托的命题 1 是不符合数学认知的,“所有集合”动态变化,且无穷无尽,而这里将其看作静止不变的一个可数形式,这造成了错误。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

递龟_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值