用“康托悖论”来理解集合的基础知识。
集合基本概念:
- 集合的基数:
集合中元素的个数,也即集合的大小,通常表示为 ∣ A ∣ |A| ∣A∣. - 集族:
以集合为元素的集合,包括空集。 - 幂集:
集合的所有子集所构成的集族,通常记作 2 S , 2 S = { A ∣ A ⊆ S } 2^S, 2^S=\{A|A \subseteq S\} 2S,2S={A∣A⊆S}.
例如:
集合 A = { 1 , 2 , 3 } A=\{1,2,3\} A={1,2,3} , A A A 的基数为 ∣ A ∣ = 3 |A|=3 ∣A∣=3 ;
若 B = { { ∅ } , { A } } B=\{\{\empty\},\{A\}\} B={{∅},{A}} ,则 B B B 为包含两个元素的集族;
A A A 的幂集为 P ( A ) = { { } , { a } , { b } , { c } , { a , b } , { a , c } , { b , c } , { a , b , c } } P(A)=\{\{\},\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} P(A)={{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.
康托悖论:
如果同时考虑以下两个命题,则产生逻辑上的矛盾:
命题 1:如果考虑所有集合所构成的集族
Λ
\Lambda
Λ,设其基数为
λ
\lambda
λ,则
Λ
\Lambda
Λ 应为最大集合,其基数
λ
\lambda
λ 为最大基数。
命题 2:任意集合
Λ
\Lambda
Λ 的幂集
2
Λ
2^{\Lambda}
2Λ 的基数都比该集合的基数大。[康拓定理]
明显发现,康托的命题 1 是不符合数学认知的,“所有集合”动态变化,且无穷无尽,而这里将其看作静止不变的一个可数形式,这造成了错误。