在第一篇博客中,我们介绍了如何基于 Flask 部署一个利用百度文心一言模型生成财务分析报告的 API,包括初步准备、代码结构与功能分析、部署和测试以及一个简单的示例。然而,正如我们在第一篇博客结尾提到的,该 API 存在一些不足之处,例如财务数据分析过于简单,报告格式不够理想。在这篇博客中,我们将重点介绍如何改进这些方面,使 API 更加实用和强大。
一、调教百度文心一言大模型参数
在利用百度文心一言模型生成财务分析报告的过程中,合理的模型调教参数设置对于提高报告质量至关重要。以下是针对本项目中模型调教的具体策略和示例:
1.确认模型参数种类
首先要确认所使用的模型有哪些参数,如本项目所使用的模型为 ERNIE-4.0-8K ,对应参数可在示例代码中心查看,其参数如下:
2.参数调教及设置
2.1 参数调教
在百度智能云的千帆大模型平台上,提供了在线调试工具,可用于对模型进行测试和参数调整。 首先在示例代码中心选择自己使用的大模型,调试工具就在页面中间,如下图:
可以选择适当的输入内容及参数设置,点击调试按钮后,模型反馈会及时显示在屏幕右侧。通过在线调试,可以根据实际应用场景和需求,找到更适合的参数组合,以获得更符合期望的模型输出效果。
2.2 参数调整
-
温度(temperature)参数
为了在保证报告准确性的同时,使模型输出具有一定的灵活性和多样性,我们将温度参数设置为0.5
。这个值相对较低,使得模型的回答更倾向于基于已有的知识和数据进行合理推测,减少随机生成不合理内容的可能性。 -
top_p 参数
将top_p
参数设置为0.75
,以平衡输出文本的多样性和相关性。在生成财务分析报告时,模型能够在考虑多种相关因素的基础上,提供丰富但不过于分散的分析内容。 -
penalty_score 参数
为了减少报告中的重复语句,提高内容的精炼度,我们将penalty_score
参数提高到1.5
。这样,模型在生成文本时会对重复的词汇或短语进行一定程度的惩罚,促使其生成更简洁、准确的表述。例如,在描述收入趋势时,不会反复使用相同的句式来解释预测结果。 -
system 字段:在
system
字段中明确设定模型人设为 “你是一位专业的财务分析师,精通各类财务分析方法和指标,能够根据提供的财务数据生成详细、准确、具有实用价值的财务分析报告。你善于用简洁明了的语言阐述复杂的财务概念和分析结果,注重数据的准确性和逻辑的严密性。” 这有助于引导模型按照专业财务分析的规范和风格生成报告。 -
disable_search 参数:设置
disable_search = True
,关闭实时搜索功能。因为我们主要依赖于上传的财务数据进行分析,外部搜索信息可能会干扰分析的准确性和一致性,确保模型专注于内部数据处理。 -
enable_citation 参数:开启
enable_citation = True
,使模型有概率返回搜索溯源信息。在财务分析报告中,这可以为数据来源或分析依据提供一定的参考依据,增加报告的可信度和透明度。 -
max_output_tokens 参数:根据预期报告的长度和详细程度,将
max_output_tokens
设置为1800
。这样既能保证报告包含足够丰富的财务分析内容,又不会使报告过于冗长,便于用户阅读和理解。 </