快速幂的指数只能是整数
模板
递归:
不用管指数正负,如果为负,就对最终结果去倒数就可以
ll pow_mod(ll a,ll n,ll m)
{
if(n==0)return 1;
ll x=pow_mod(a,n/2,m);
ll ans=x*x%m;
if(n%2==1)ans=ans*a%m;
return ans;
}
static int pow(int a,int n){
if(n==0)return 1;
int t=pow(a,n/2);
if(n%2==1)return t*t*a;
return t*t;
}
迭代:
static int pow(int a,int n){
int res=1;
while(n>0){
if(n%2==1)res*=a;
a*=a;
n/=2;
}
return res;
}
例题
题目描述
众所周知,Komorebi十分擅长做数学题,尤其擅长数论,莫比乌斯反演、min25筛、Pollar_rho……等等理论对他而言都是手到擒来,不在话下。但是因为他太强了,导致不太喜欢做简单的题目。现在他的老师给他布置了一道数学题,他觉得太简单了,于是想考考机智的你。
题目很简单,给定一个正整数n,求出
n^nmod\left(n+2\right)n
n
mod(n+2)
输入描述:
仅一行,一个正整数n
输出描述:
输出一行,一个正整数 n^nmod\left(n+2\right)n
n
mod(n+2)
示例1
输入
复制
2
输出
复制
0
备注:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll n,mod;
ll pow_mod(ll a,ll n,ll m)
{
if(n==0)return 1;
ll x=pow_mod(a,n/2,m);
ll ans=x*x%m;
if(n%2==1)ans=ans*a%m;
return ans;
}
int main(){
cin>>n;
mod=n+2;
cout<<pow_mod(n,n,mod);
return 0;
}